Suppr超能文献

在纤维蛋白凝胶上用鼠胚心肌细胞优化自发收缩的心肌组织片。

Optimizing a spontaneously contracting heart tissue patch with rat neonatal cardiac cells on fibrin gel.

机构信息

Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, TX, USA.

出版信息

J Tissue Eng Regen Med. 2017 Jan;11(1):153-163. doi: 10.1002/term.1895. Epub 2014 Apr 28.

Abstract

Engineered cardiac tissues have been constructed with primary or stem cell-derived cardiac cells on natural or synthetic scaffolds. They represent a tremendous potential for the treatment of injured areas through the addition of tensional support and delivery of sufficient cells. In this study, 1-6 million (M) neonatal cardiac cells were seeded on fibrin gels to fabricate cardiac tissue patches, and the effects of culture time and cell density on spontaneous contraction rates, twitch forces and paced response frequencies were measured. Electrocardiograms and signal volume index of connexin 43 were also analysed. Patches of 1-6 M cell densities exhibited maximal contraction rates in the range 305-410 beats/min (bpm) within the first 4 days after plating; low cell density (1-3 M) patches sustained rhythmic contraction longer than high cell density patches (4-6 M). Patches with 1-6 M cell densities generated contractile forces in the range 2.245-14.065 mN/mm on days 4-6. Upon patch formation, a paced response frequency of approximately 6 Hz was obtained, and decreased to approximately 3 Hz after 6 days of culture. High cell density patches contained a thicker real cardiac tissue layer, which generated higher R-wave amplitudes; however, low-density patches had a greater signal volume index of connexin 43. In addition, all patches manifested endothelial cell growth and robust nuclear division. The present study demonstrates that the proper time for in vivo implantation of this cardiac construct is just at patch formation, and patches with 3-4 M cell densities are the best candidates. Copyright © 2014 John Wiley & Sons, Ltd.

摘要

工程化心脏组织是利用原代或干细胞来源的心肌细胞在天然或合成支架上构建的。它们通过提供张力支持和输送足够数量的细胞,为治疗受损区域提供了巨大的潜力。在这项研究中,将 100 万至 600 万(M)个新生心肌细胞接种到纤维蛋白凝胶上,以构建心脏组织贴片,并测量培养时间和细胞密度对自发收缩率、抽搐力和起搏反应频率的影响。还分析了连接蛋白 43 的心电图和信号体积指数。在接种后的前 4 天内,细胞密度为 100 万至 600 万(M)的贴片表现出 305-410 次/分钟(bpm)的最大收缩率;低细胞密度(100 万至 300 万)贴片的节律性收缩持续时间长于高细胞密度贴片(400 万至 600 万)。在第 4-6 天,细胞密度为 100 万至 600 万的贴片产生了 2.245-14.065 mN/mm 的收缩力。贴片形成时,获得约 6 Hz 的起搏反应频率,培养 6 天后降至约 3 Hz。高细胞密度贴片含有较厚的真实心脏组织层,产生较高的 R 波幅度;然而,低密度贴片具有更高的连接蛋白 43 的信号体积指数。此外,所有贴片都表现出内皮细胞生长和旺盛的核分裂。本研究表明,该心脏构建体体内植入的最佳时间恰好在贴片形成时,细胞密度为 300 万至 400 万的贴片是最佳候选物。版权所有 © 2014 年 John Wiley & Sons, Ltd.

相似文献

1
Optimizing a spontaneously contracting heart tissue patch with rat neonatal cardiac cells on fibrin gel.
J Tissue Eng Regen Med. 2017 Jan;11(1):153-163. doi: 10.1002/term.1895. Epub 2014 Apr 28.
2
Engineered cardiac tissue patch maintains structural and electrical properties after epicardial implantation.
Biomaterials. 2018 Mar;159:48-58. doi: 10.1016/j.biomaterials.2018.01.002. Epub 2018 Jan 3.
4
Micropatterned fibrin scaffolds increase cardiomyocyte alignment and contractility for the fabrication of engineered myocardial tissue.
J Biomed Mater Res A. 2023 Sep;111(9):1309-1321. doi: 10.1002/jbm.a.37530. Epub 2023 Mar 18.
5
Functional consequences of a tissue-engineered myocardial patch for cardiac repair in a rat infarct model.
Tissue Eng Part A. 2014 Apr;20(7-8):1325-35. doi: 10.1089/ten.TEA.2013.0312. Epub 2014 Feb 6.
6
Design and fabrication of heart muscle using scaffold-based tissue engineering.
J Biomed Mater Res A. 2008 Jul;86(1):195-208. doi: 10.1002/jbm.a.31642.
8
Force characteristics of in vivo tissue-engineered myocardial constructs using varying cell seeding densities.
Artif Organs. 2008 Sep;32(9):684-91. doi: 10.1111/j.1525-1594.2008.00591.x. Epub 2008 Jul 30.
9
Enhanced Electrical Integration of Engineered Human Myocardium via Intramyocardial versus Epicardial Delivery in Infarcted Rat Hearts.
PLoS One. 2015 Jul 10;10(7):e0131446. doi: 10.1371/journal.pone.0131446. eCollection 2015.
10
Contractile three-dimensional bioengineered heart muscle for myocardial regeneration.
J Biomed Mater Res A. 2007 Mar 1;80(3):719-31. doi: 10.1002/jbm.a.31090.

引用本文的文献

1
Insights into the molecular mechanism of pulmonary vein stenosis in pediatric patients with congenital heart disease.
JTCVS Open. 2025 Apr 24;26:166-181. doi: 10.1016/j.xjon.2025.04.012. eCollection 2025 Aug.
2
Noninvasive Measurement of EKG Properties of 3D Artificial Heart Muscle.
AIMS Cell Tissue Eng. 2017;1(1):12-30. doi: 10.3934/celltissue.2017.1.12.
3
Bioscaffolds of graphene based-polymeric hybrid materials for myocardial tissue engineering.
Bioimpacts. 2024;14(1):27684. doi: 10.34172/bi.2023.27684. Epub 2023 Aug 12.
4
How to fix a broken heart-designing biofunctional cues for effective, environmentally-friendly cardiac tissue engineering.
Front Chem. 2023 Oct 12;11:1267018. doi: 10.3389/fchem.2023.1267018. eCollection 2023.
5
Recent advances in biological pumps as a building block for bioartificial hearts.
Front Bioeng Biotechnol. 2023 Jan 20;11:1061622. doi: 10.3389/fbioe.2023.1061622. eCollection 2023.
6
Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering.
J Cardiovasc Dev Dis. 2021 Oct 22;8(11):137. doi: 10.3390/jcdd8110137.
7
Current State of the Art in Ventricle Tissue Engineering.
Front Cardiovasc Med. 2020 Nov 3;7:591581. doi: 10.3389/fcvm.2020.591581. eCollection 2020.
10
Current Trends in Biomaterial Utilization for Cardiopulmonary System Regeneration.
Stem Cells Int. 2018 Apr 29;2018:3123961. doi: 10.1155/2018/3123961. eCollection 2018.

本文引用的文献

2
A novel suture-based method for efficient transplantation of stem cells.
J Biomed Mater Res A. 2013 Mar;101(3):809-18. doi: 10.1002/jbm.a.34386. Epub 2012 Sep 8.
3
Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function.
Biomaterials. 2011 Dec;32(35):9180-7. doi: 10.1016/j.biomaterials.2011.08.050. Epub 2011 Sep 8.
4
Cardiac cell sheet transplantation improves damaged heart function via superior cell survival in comparison with dissociated cell injection.
Tissue Eng Part A. 2011 Dec;17(23-24):2973-80. doi: 10.1089/ten.tea.2010.0659. Epub 2011 Aug 29.
5
Growth of engineered human myocardium with mechanical loading and vascular coculture.
Circ Res. 2011 Jun 24;109(1):47-59. doi: 10.1161/CIRCRESAHA.110.237206. Epub 2011 May 19.
6
Transient regenerative potential of the neonatal mouse heart.
Science. 2011 Feb 25;331(6020):1078-80. doi: 10.1126/science.1200708.
7
A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation.
Tissue Eng Part C Methods. 2011 Apr;17(4):463-73. doi: 10.1089/ten.TEC.2010.0405. Epub 2011 Jan 14.
8
Ionic mechanisms of pacemaker activity in spontaneously contracting atrial HL-1 cells.
J Cardiovasc Pharmacol. 2011 Jan;57(1):28-36. doi: 10.1097/FJC.0b013e3181fda7c4.
9
Engineered fetal cardiac graft preserves its cardiomyocyte proliferation within postinfarcted myocardium and sustains cardiac function.
Tissue Eng Part A. 2011 Mar;17(5-6):585-96. doi: 10.1089/ten.TEA.2010.0259. Epub 2011 Jan 16.
10
Regulation of fibre contraction in a rat model of myocardial ischemia.
PLoS One. 2010 Mar 4;5(3):e9528. doi: 10.1371/journal.pone.0009528.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验