Doerr S, De Fabritiis G
Computational Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra , Barcelona Biomedical Research Park (PRBB), C/Doctor Aiguader 88, 08003 Barcelona, Spain.
J Chem Theory Comput. 2014 May 13;10(5):2064-9. doi: 10.1021/ct400919u. Epub 2014 Apr 4.
High-throughput molecular dynamics (MD) simulations are a computational method consisting of using multiple short trajectories, instead of few long ones, to cover slow biological time scales. Compared to long trajectories this method offers the possibility to start the simulations in successive batches, building a knowledgeable model of the available data to inform subsequent new simulations iteratively. Here, we demonstrate an automatic, iterative, on-the-fly method for learning and sampling molecular simulations in the context of ligand binding for the case of trypsin-benzamidine binding. The method uses Markov state models to learn a simplified model of the simulations and decide where best to sample from, achieving a converged binding affinity in approximately one microsecond, 1 order of magnitude faster than classical sampling. This method demonstrates for the first time the potential of adaptive sampling schemes in the case of ligand binding.
高通量分子动力学(MD)模拟是一种计算方法,它通过使用多个短轨迹而不是少数几个长轨迹来覆盖缓慢的生物时间尺度。与长轨迹相比,这种方法提供了以连续批次启动模拟的可能性,构建可用数据的知识模型,以便迭代地为后续新模拟提供信息。在这里,我们展示了一种自动、迭代、实时的方法,用于在胰蛋白酶-苯甲脒结合的配体结合情况下学习和采样分子模拟。该方法使用马尔可夫状态模型来学习模拟的简化模型,并决定从何处进行最佳采样,在大约一微秒内实现收敛的结合亲和力,比传统采样快1个数量级。该方法首次证明了自适应采样方案在配体结合情况下的潜力。