Heidary Nina, Utesch Tillmann, Zerball Maximilian, Horch Marius, Millo Diego, Fritsch Johannes, Lenz Oliver, von Klitzing Regine, Hildebrandt Peter, Fischer Anna, Mroginski Maria Andrea, Zebger Ingo
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135 & 124, D-10623, Berlin, Germany.
Biomolecular Spectroscopy/LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands.
PLoS One. 2015 Nov 18;10(11):e0143101. doi: 10.1371/journal.pone.0143101. eCollection 2015.
Protein immobilization on electrodes is a key concept in exploiting enzymatic processes for bioelectronic devices. For optimum performance, an in-depth understanding of the enzyme-surface interactions is required. Here, we introduce an integral approach of experimental and theoretical methods that provides detailed insights into the adsorption of an oxygen-tolerant [NiFe] hydrogenase on a biocompatible gold electrode. Using atomic force microscopy, ellipsometry, surface-enhanced IR spectroscopy, and protein film voltammetry, we explore enzyme coverage, integrity, and activity, thereby probing both structure and catalytic H2 conversion of the enzyme. Electrocatalytic efficiencies can be correlated with the mode of protein adsorption on the electrode as estimated theoretically by molecular dynamics simulations. Our results reveal that pre-activation at low potentials results in increased current densities, which can be rationalized in terms of a potential-induced re-orientation of the immobilized enzyme.
蛋白质固定在电极上是利用酶促过程制造生物电子器件的关键概念。为实现最佳性能,需要深入了解酶与表面的相互作用。在此,我们引入一种实验与理论方法相结合的整体方法,该方法能深入洞察耐氧[NiFe]氢化酶在生物相容性金电极上的吸附情况。通过原子力显微镜、椭偏仪、表面增强红外光谱和蛋白质膜伏安法,我们探究了酶的覆盖度、完整性和活性,从而对酶的结构和催化H2转化进行了探测。理论上通过分子动力学模拟估计,电催化效率可与蛋白质在电极上的吸附模式相关联。我们的结果表明,低电位下的预激活会导致电流密度增加,这可以根据固定化酶的电位诱导重新定向来解释。