Suppr超能文献

将膜结合氢化酶定向固定在电极上以进行直接电子转移。

Oriented immobilization of a membrane-bound hydrogenase onto an electrode for direct electron transfer.

机构信息

Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain.

出版信息

Langmuir. 2011 May 17;27(10):6449-57. doi: 10.1021/la200141t. Epub 2011 Apr 14.

Abstract

The interaction of redox enzymes with electrodes is of great interest for studying the catalytic mechanisms of redox enzymes and for bioelectronic applications. Efficient electron transport between the biocatalysts and the electrodes has achieved more success with soluble enzymes than with membrane enzymes because of the higher structural complexity and instability of the latter proteins. In this work, we report a strategy for immobilizing a membrane-bound enzyme onto gold electrodes with a controlled orientation in its fully active conformation. The immobilized redox enzyme is the Ni-Fe-Se hydrogenase from Desulfovibrio vulgaris Hildenborough, which catalyzes H(2)-oxidation reversibly and is associated with the cytoplasmic membrane by a lipidic tail. Gold surfaces modified with this enzyme and phospholipids have been studied by atomic force microscopy (AFM) and electrochemical methods. The combined study indicates that by a two-step immobilization procedure the hydrogenase can be inserted via its lipidic tail onto a phospholipidic bilayer formed over the gold surface, allowing only mediated electron transfer between the enzyme and electrode. However, a one-step immobilization procedure favors the formation of a hydrogenase monolayer over the gold surface with its lipidic tail inserted into a phospholipid bilayer formed on top of the hydrogenase molecules. This latter method has allowed for the first time efficient electron transfer between a membrane-bound enzyme in its native conformation and an electrode.

摘要

氧化还原酶与电极的相互作用对于研究氧化还原酶的催化机制和生物电子学应用非常重要。由于后者蛋白质结构更复杂且更不稳定,与可溶性酶相比,膜结合酶在生物催化剂和电极之间实现高效电子传递的效果较差。在这项工作中,我们报告了一种将膜结合酶固定在金电极上的策略,使酶在其完全活性构象中具有受控的定向。固定化的氧化还原酶是来自脱硫弧菌的镍铁硒氢化酶,它可逆地催化 H2 氧化,并且通过脂质尾巴与细胞质膜相关联。用这种酶和磷脂修饰的金表面已经通过原子力显微镜(AFM)和电化学方法进行了研究。综合研究表明,通过两步固定化程序,氢化酶可以通过其脂质尾巴插入到金表面上形成的磷脂双层中,从而仅允许酶和电极之间进行中介电子转移。然而,一步固定化程序有利于在金表面上形成氢化酶单层,其脂质尾巴插入在氢化酶分子顶部形成的磷脂双层中。这种方法首次实现了在其天然构象中具有膜结合酶的高效电子转移到电极。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验