Suppr超能文献

基于启动子的新型非编码RNA鉴定揭示了拟南芥中双顺反子snoRNA-miRNA基因的存在。

Promoter-based identification of novel non-coding RNAs reveals the presence of dicistronic snoRNA-miRNA genes in Arabidopsis thaliana.

作者信息

Qu Ge, Kruszka Katarzyna, Plewka Patrycja, Yang Shu-Yi, Chiou Tzyy-Jen, Jarmolowski Artur, Szweykowska-Kulinska Zofia, Echeverria Manuel, Karlowski Wojciech M

机构信息

Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland.

Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, Poznan, 61-614, Poland.

出版信息

BMC Genomics. 2015 Nov 25;16:1009. doi: 10.1186/s12864-015-2221-x.

Abstract

BACKGROUND

In the past few decades, non-coding RNAs (ncRNAs) have emerged as important regulators of gene expression in eukaryotes. Most studies of ncRNAs in plants have focused on the identification of silencing microRNAs (miRNAs) and small interfering RNAs (siRNAs). Another important family of ncRNAs that has been well characterized in plants is the small nucleolar RNAs (snoRNAs) and the related small Cajal body-specific RNAs (scaRNAs). Both target chemical modifications of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). In plants, the snoRNA genes are organized in clusters, transcribed by RNA Pol II from a common promoter and subsequently processed into mature molecules. The promoter regions of snoRNA polycistronic genes in plants are highly enriched in two conserved cis-regulatory elements (CREs), Telo-box and Site II, which coordinate the expression of snoRNAs and ribosomal protein coding genes throughout the cell cycle.

RESULTS

In order to identify novel ncRNA genes, we have used the snoRNA Telo-box/Site II motifs combination as a functional promoter indicator to screen the Arabidopsis genome. The predictions generated by this process were tested by detailed exploration of available RNA-Seq and expression data sets and experimental validation. As a result, we have identified several snoRNAs, scaRNAs and 'orphan' snoRNAs. We also show evidence for 16 novel ncRNAs that lack similarity to any reported RNA family. Finally, we have identified two dicistronic genes encoding precursors that are processed to mature snoRNA and miRNA molecules. We discuss the evolutionary consequences of this result in the context of a tight link between snoRNAs and miRNAs in eukaryotes.

CONCLUSIONS

We present an alternative computational approach for non-coding RNA detection. Instead of depending on sequence or structure similarity in the whole genome screenings, we have explored the properties of promoter regions of well-characterized ncRNAs. Interestingly, besides expected ncRNAs predictions we were also able to recover single precursor arrangement for snoRNA-miRNA. Accompanied by analyses performed on rice sequences, we conclude that such arrangement might have interesting functional and evolutionary consequences and discuss this result in the context of a tight link between snoRNAs and miRNAs in eukaryotes.

摘要

背景

在过去几十年中,非编码RNA(ncRNAs)已成为真核生物基因表达的重要调节因子。植物中大多数关于ncRNAs的研究都集中在沉默微小RNA(miRNAs)和小干扰RNA(siRNAs)的鉴定上。在植物中已得到充分表征的另一类重要的ncRNAs是小核仁RNA(snoRNAs)和相关的小卡哈尔体特异性RNA(scaRNAs)。二者均靶向核糖体RNA(rRNAs)和小核RNA(snRNAs)的化学修饰。在植物中,snoRNA基因成簇排列,由RNA聚合酶II从一个共同启动子转录,随后加工成成熟分子。植物中snoRNA多顺反子基因的启动子区域高度富集两种保守的顺式调节元件(CREs),即端粒盒(Telo-box)和位点II(Site II),它们在整个细胞周期中协调snoRNAs和核糖体蛋白编码基因的表达。

结果

为了鉴定新的ncRNA基因,我们使用snoRNA端粒盒/位点II基序组合作为功能性启动子指标来筛选拟南芥基因组。通过详细探索可用的RNA测序(RNA-Seq)和表达数据集以及实验验证,对该过程产生的预测进行了测试。结果,我们鉴定出了几种snoRNAs、scaRNAs和“孤儿”snoRNAs。我们还为16种与任何已报道的RNA家族均无相似性的新型ncRNAs提供了证据。最后,我们鉴定出了两个双顺反子基因,它们编码的前体可加工成成熟的snoRNA和miRNA分子。我们在真核生物中snoRNAs和miRNAs之间紧密联系的背景下讨论了这一结果的进化后果。

结论

我们提出了一种用于非编码RNA检测的替代计算方法。我们没有在全基因组筛选中依赖序列或结构相似性,而是探索了已充分表征的ncRNAs启动子区域的特性。有趣的是,除了预期的ncRNAs预测结果外,我们还能够获得snoRNA-miRNA的单前体排列。结合对水稻序列的分析,我们得出结论,这种排列可能具有有趣的功能和进化后果,并在真核生物中snoRNAs和miRNAs之间紧密联系的背景下讨论了这一结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cd5/4660826/60ccda920d7a/12864_2015_2221_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验