Jobst Johannes, Kautz Jaap, Geelen Daniël, Tromp Rudolf M, van der Molen Sense Jan
Huygens-Kamerlingh Onnes Laboratorium, Leiden Institute of Physics, Leiden University, PO Box 9504, Leiden NL-2300 RA, Netherlands.
IBM T.J. Watson Research Center, 1101 Kitchawan Road, PO Box 218, Yorktown Heights, New York 10598, USA.
Nat Commun. 2015 Nov 26;6:8926. doi: 10.1038/ncomms9926.
The properties of any material are fundamentally determined by its electronic band structure. Each band represents a series of allowed states inside a material, relating electron energy and momentum. The occupied bands, that is, the filled electron states below the Fermi level, can be routinely measured. However, it is remarkably difficult to characterize the empty part of the band structure experimentally. Here, we present direct measurements of unoccupied bands of monolayer, bilayer and trilayer graphene. To obtain these, we introduce a technique based on low-energy electron microscopy. It relies on the dependence of the electron reflectivity on incidence angle and energy and has a spatial resolution ∼10 nm. The method can be easily applied to other nanomaterials such as van der Waals structures that are available in small crystals only.
任何材料的性质从根本上是由其电子能带结构决定的。每个能带代表材料内部一系列允许的状态,它将电子能量和动量联系起来。占据的能带,即费米能级以下填充的电子态,可以常规测量。然而,通过实验表征能带结构的空态部分非常困难。在此,我们展示了对单层、双层和三层石墨烯未占据能带的直接测量。为了获得这些测量结果,我们引入了一种基于低能电子显微镜的技术。它依赖于电子反射率对入射角和能量的依赖性,并且具有约10纳米的空间分辨率。该方法可以很容易地应用于其他纳米材料,例如仅以小晶体形式存在的范德华结构。