Kossmann Simone, Neese Frank
Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany and Max-Planck Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
J Chem Theory Comput. 2010 Aug 10;6(8):2325-38. doi: 10.1021/ct100199k. Epub 2010 Jul 2.
Efficient energy calculations and structure optimizations employing second-order Møller-Plesset perturbation theory (MP2) are presented. The application of the RIJCOSX approximation, which involves different approximations for the formation of the Coulomb- and exchange-type matrices, to MP2 theory is demonstrated. The RIJCOSX approximation incorporates the 'resolution of the identity' approximation in terms of a Split-RI-J variant for the evaluation of the Coulomb matrices and a seminumeric exchange treatment via the 'chain-of-spheres' algorithm for the formation of the exchange-type matrices. Beside the derivation of the working equations, the RIJCOSX-MP2 method is benchmarked against the original MP2 and the already highly efficient RI-MP2 method. Energies as well as gradients are computed employing various basis sets and are compared to the conventional MP2 results concerning accuracy and total wall clock times. Speedups of typically a factor of 5-7 in comparison to MP2 can be obeserved for the largest basis set employed in our study. Total energies are reproduced with an average error of ≤0.8 kcal/mol and minimum energy geometries differ by ∼0.1 pm in bond lengths and typically ∼0.2 degrees in bond angles. The RIJCOSX-MP2 gradient parallelizes with a speedup of 8.2 on 10 processors. The algorithms are implemented into the ORCA electronic structure package.
本文介绍了采用二阶莫勒-普莱塞特微扰理论(MP2)进行的高效能量计算和结构优化。展示了RIJCOSX近似在MP2理论中的应用,该近似对库仑矩阵和交换型矩阵的形成采用了不同的近似方法。RIJCOSX近似在评估库仑矩阵时采用了基于Split-RI-J变体的“单位分解”近似,并通过“球链”算法对交换型矩阵的形成进行半数值交换处理。除了推导工作方程外,还将RIJCOSX-MP2方法与原始MP2方法以及已经非常高效的RI-MP2方法进行了基准测试。使用各种基组计算能量和梯度,并将其与传统MP2结果在准确性和总计算时间方面进行比较。对于我们研究中使用的最大基组,与MP2相比,通常可观察到5至7倍的加速。总能量的再现平均误差≤0.8 kcal/mol,最小能量几何结构的键长相差约0.1 pm,键角通常相差约0.2度。RIJCOSX-MP2梯度在10个处理器上并行加速8.2倍。这些算法已被实现到ORCA电子结构软件包中。