Adlerz Katrina M, Aranda-Espinoza Helim, Hayenga Heather N
Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA.
Eur Biophys J. 2016 May;45(4):301-9. doi: 10.1007/s00249-015-1096-8. Epub 2015 Nov 27.
Macrophages play a key role in atherosclerosis, cancer, and in the response to implanted medical devices. In each of these situations, the mechanical environment of a macrophage can vary from soft to stiff. However, how stiffness affects macrophage behavior remains uncertain. Using substrates of varying stiffness, we show macrophage phenotype and function depends on substrate stiffness. Notably, the cell area increases slightly from a sphere after 18 h on substrates mimicking healthy arterial stiffness (1-5 kPa), whereas macrophages on stiffer substrates (280 kPa-70 GPa) increased in area by nearly eight-fold. Macrophage migration is random regardless of substrate stiffness. The total average track speed was 7.8 ± 0.5 μm/h, with macrophages traveling fastest on the 280-kPa substrate (12.0 ± 0.5 μm/h) and slowest on the 3-kPa substrate (5.0 ± 0.4 μm/h). In addition F-actin organization in macrophages depends on substrate stiffness. On soft substrates, F-actin is spread uniformly throughout the cytoplasm, whereas on stiff substrates F-actin is functionalized into stress fibers. The proliferation rate of macrophages was faster on stiff substrates. Cells plated on the 280-kPa gel had a significantly shorter doubling time than those plated on the softer substrate. However, the ability of macrophages to phagocytose 1-μm particles did not depend on substrate stiffness. In conclusion, the results herein show macrophages are mechanosensitive; they respond to changes in stiffness by modifying their area, migration speed, actin organization, and proliferation rate. These results are important to understanding how macrophages respond in complex mechanical environments such as an atherosclerotic plaque.
巨噬细胞在动脉粥样硬化、癌症以及对植入医疗设备的反应中发挥着关键作用。在上述每种情况下,巨噬细胞所处的机械环境可能从柔软到坚硬各不相同。然而,硬度如何影响巨噬细胞的行为仍不确定。我们使用不同硬度的基质,发现巨噬细胞的表型和功能取决于基质硬度。值得注意的是,在模拟健康动脉硬度(1 - 5千帕)的基质上培养18小时后,细胞面积从球形略有增加,而在更硬的基质(280千帕 - 70吉帕)上,巨噬细胞的面积增加了近八倍。无论基质硬度如何,巨噬细胞的迁移都是随机的。总平均轨迹速度为7.8±0.5微米/小时,巨噬细胞在280千帕的基质上移动最快(12.0±0.5微米/小时),在3千帕的基质上移动最慢(5.0±0.4微米/小时)。此外,巨噬细胞中F - 肌动蛋白的组织取决于基质硬度。在柔软的基质上,F - 肌动蛋白均匀分布在整个细胞质中,而在坚硬的基质上,F - 肌动蛋白会形成应力纤维。巨噬细胞在坚硬基质上的增殖速率更快。接种在280千帕凝胶上的细胞比接种在较软基质上的细胞倍增时间明显更短。然而,巨噬细胞吞噬1微米颗粒的能力并不取决于基质硬度。总之,本文的结果表明巨噬细胞具有机械敏感性;它们通过改变自身面积、迁移速度、肌动蛋白组织和增殖速率来响应硬度变化。这些结果对于理解巨噬细胞在诸如动脉粥样硬化斑块等复杂机械环境中的反应非常重要。