Karamertzanis Panagiotis G, Raiteri Paolo, Galindo Amparo
Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom, and Department of Chemistry and Nanochemistry Research Institute, GPO Box U1987, 6845 Perth, Western Australia.
J Chem Theory Comput. 2010 May 11;6(5):1590-607. doi: 10.1021/ct900693q.
We propose a novel, anisotropic rigid-body intermolecular potential model to predict the properties of water and the hydration free energies of neutral organic solutes. The electrostatic interactions of water and the solutes are modeled using atomic multipole moments up to hexadecapole; these are obtained from distributed multipole analysis of the quantum mechanically computed charge densities and include average polarization effects in solution. The repulsion-dispersion water-water interactions are modeled with a three-site, exp-6 model fitted to the experimental liquid water density and oxygen-oxygen radial distribution function at ambient conditions. The proposed water model reproduces well several water properties not used in its parametrization, including vapor-liquid coexistence densities, the maximum in liquid water density at atmospheric pressure, the structure of ordered ice polymorphs, and the liquid water heat capacity. The model is used to compute the hydration free energy of 10 neutral organic solutes using explicit-solvent free energy perturbation. The solute-solute repulsion-dispersion intermolecular potential is obtained from previous parametrizations on organic crystal structures. In order to calculate the free energies of hydration, water-solute repulsion-dispersion interactions are modeled using Lorenz-Berthelot combining rules. The root-mean-square error of the predicted hydration free energies is 1.5 kcal mol(-1), which is comparable to the error found using a continuum mean-field quantum mechanical approach parametrized using experimental free energy of hydration data. The results are also contrasted with explicit-solvent hydration free energies obtained with an atomic charge representation of the solute's charge density computed at the same level of theory used to compute the distributed multipoles. Replacing the multipole description of the solute's charge density with an atomic charge model changes the free energy of hydration by as much as 3 kcal mol(-1) and provides an estimate for the effect of the modeling quality of the intermolecular electrostatic forces in free energy of solvation calculations.
我们提出了一种新颖的各向异性刚体分子间势模型,用于预测水的性质以及中性有机溶质的水合自由能。水与溶质之间的静电相互作用采用高达十六极的原子多极矩进行建模;这些多极矩是通过对量子力学计算的电荷密度进行分布式多极分析得到的,并且包括溶液中的平均极化效应。排斥 - 色散水 - 水相互作用采用一个三位点的exp - 6模型进行建模,该模型拟合了环境条件下的实验液态水密度和氧 - 氧径向分布函数。所提出的水模型很好地再现了其参数化过程中未使用的几种水的性质,包括气 - 液共存密度、大气压下液态水密度的最大值、有序冰多晶型物的结构以及液态水的热容。该模型用于通过显式溶剂自由能微扰计算10种中性有机溶质的水合自由能。溶质 - 溶质排斥 - 色散分子间势是从先前对有机晶体结构的参数化中获得的。为了计算水合自由能,水 - 溶质排斥 - 色散相互作用采用洛伦兹 - 贝特洛混合规则进行建模。预测的水合自由能的均方根误差为1.5 kcal mol⁻¹,这与使用基于实验水合自由能数据参数化的连续介质平均场量子力学方法所得到的误差相当。结果还与使用在用于计算分布式多极的相同理论水平下计算的溶质电荷密度的原子电荷表示所获得的显式溶剂水合自由能进行了对比。用原子电荷模型取代溶质电荷密度的多极描述会使水合自由能改变多达3 kcal mol⁻¹,并为溶剂化自由能计算中分子间静电力的建模质量的影响提供了一个估计。