Alexeeff Stacey E, Carroll Raymond J, Coull Brent
Institute for Mathematics Applied to Geosciences, National Center for Atmospheric Research, Boulder, CO USA and Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
Department of Statistics, Texas A & M University, College Station, TX, USA.
Biostatistics. 2016 Apr;17(2):377-89. doi: 10.1093/biostatistics/kxv048. Epub 2015 Nov 29.
Spatial modeling of air pollution exposures is widespread in air pollution epidemiology research as a way to improve exposure assessment. However, there are key sources of exposure model uncertainty when air pollution is modeled, including estimation error and model misspecification. We examine the use of predicted air pollution levels in linear health effect models under a measurement error framework. For the prediction of air pollution exposures, we consider a universal Kriging framework, which may include land-use regression terms in the mean function and a spatial covariance structure for the residuals. We derive the bias induced by estimation error and by model misspecification in the exposure model, and we find that a misspecified exposure model can induce asymptotic bias in the effect estimate of air pollution on health. We propose a new spatial simulation extrapolation (SIMEX) procedure, and we demonstrate that the procedure has good performance in correcting this asymptotic bias. We illustrate spatial SIMEX in a study of air pollution and birthweight in Massachusetts.
空气污染暴露的空间建模在空气污染流行病学研究中广泛应用,作为一种改善暴露评估的方法。然而,在对空气污染进行建模时,存在暴露模型不确定性的关键来源,包括估计误差和模型误设。我们在测量误差框架下研究线性健康效应模型中预测空气污染水平的使用。对于空气污染暴露的预测,我们考虑一个通用克里金框架,该框架可能在均值函数中包含土地利用回归项以及残差的空间协方差结构。我们推导了暴露模型中由估计误差和模型误设引起的偏差,并且发现误设的暴露模型会在空气污染对健康的效应估计中引起渐近偏差。我们提出一种新的空间模拟外推(SIMEX)程序,并证明该程序在纠正这种渐近偏差方面具有良好性能。我们在马萨诸塞州的一项空气污染与出生体重的研究中展示了空间SIMEX。