Minguet-Parramona Carla, Wang Yizhou, Hills Adrian, Vialet-Chabrand Silvere, Griffiths Howard, Rogers Simon, Lawson Tracy, Lew Virgilio L, Blatt Michael R
Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom (C.M.-P., Y.W., A.H., M.R.B.);Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.);Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom (H.G.);Computing Science, University of Glasgow, Alwyn Williams Building, Glasgow G12 8QQ, United Kingdom (S.R.); andPhysiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom (V.L.L.).
Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom (C.M.-P., Y.W., A.H., M.R.B.);Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.);Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom (H.G.);Computing Science, University of Glasgow, Alwyn Williams Building, Glasgow G12 8QQ, United Kingdom (S.R.); andPhysiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom (V.L.L.)
Plant Physiol. 2016 Jan;170(1):33-42. doi: 10.1104/pp.15.01607. Epub 2015 Dec 1.
Oscillations in cytosolic-free Ca(2+) concentration ([Ca(2+)]i) have been proposed to encode information that controls stomatal closure. [Ca(2+)]i oscillations with a period near 10 min were previously shown to be optimal for stomatal closure in Arabidopsis (Arabidopsis thaliana), but the studies offered no insight into their origins or mechanisms of encoding to validate a role in signaling. We have used a proven systems modeling platform to investigate these [Ca(2+)]i oscillations and analyze their origins in guard cell homeostasis and membrane transport. The model faithfully reproduced differences in stomatal closure as a function of oscillation frequency with an optimum period near 10 min under standard conditions. Analysis showed that this optimum was one of a range of frequencies that accelerated closure, each arising from a balance of transport and the prevailing ion gradients across the plasma membrane and tonoplast. These interactions emerge from the experimentally derived kinetics encoded in the model for each of the relevant transporters, without the need of any additional signaling component. The resulting frequencies are of sufficient duration to permit substantial changes in [Ca(2+)]i and, with the accompanying oscillations in voltage, drive the K(+) and anion efflux for stomatal closure. Thus, the frequency optima arise from emergent interactions of transport across the membrane system of the guard cell. Rather than encoding information for ion flux, these oscillations are a by-product of the transport activities that determine stomatal aperture.
胞质游离钙离子浓度([Ca(2+)]i)的振荡被认为可编码控制气孔关闭的信息。先前的研究表明,周期接近10分钟的[Ca(2+)]i振荡对于拟南芥(Arabidopsis thaliana)的气孔关闭最为适宜,但这些研究并未深入探讨其起源或编码机制,以验证其在信号传导中的作用。我们使用了一个经过验证的系统建模平台来研究这些[Ca(2+)]i振荡,并分析其在保卫细胞内稳态和膜运输中的起源。该模型忠实地再现了气孔关闭随振荡频率的差异,在标准条件下,最佳周期接近10分钟。分析表明,这种最佳频率是一系列加速关闭的频率之一,每种频率都源于运输与质膜和液泡膜上主要离子梯度之间的平衡。这些相互作用源于模型中为每个相关转运体编码的实验得出的动力学,无需任何额外的信号成分。由此产生的频率持续时间足以使[Ca(2+)]i发生实质性变化,并伴随着电压振荡,驱动K(+)和阴离子外流以实现气孔关闭。因此,最佳频率源于保卫细胞膜系统跨膜运输的涌现性相互作用。这些振荡并非编码离子通量的信息,而是决定气孔孔径的运输活动的副产品。