Suppr超能文献

一种应用于微生物组差异丰度分析的自适应多变量双样本检验

An Adaptive Multivariate Two-Sample Test With Application to Microbiome Differential Abundance Analysis.

作者信息

Banerjee Kalins, Zhao Ni, Srinivasan Arun, Xue Lingzhou, Hicks Steven D, Middleton Frank A, Wu Rongling, Zhan Xiang

机构信息

Department of Public Health Sciences, Pennsylvania State University, Hershey, PA, United States.

Department of Biostatistics, Johns Hopkins University, Baltimore, MD, United States.

出版信息

Front Genet. 2019 Apr 24;10:350. doi: 10.3389/fgene.2019.00350. eCollection 2019.

Abstract

Differential abundance analysis is a crucial task in many microbiome studies, where the central goal is to identify microbiome taxa associated with certain biological or clinical conditions. There are two different modes of microbiome differential abundance analysis: the individual-based univariate differential abundance analysis and the group-based multivariate differential abundance analysis. The univariate analysis identifies differentially abundant microbiome taxa subject to multiple correction under certain statistical error measurements such as false discovery rate, which is typically complicated by the high-dimensionality of taxa and complex correlation structure among taxa. The multivariate analysis evaluates the overall shift in the abundance of microbiome composition between two conditions, which provides useful preliminary differential information for the necessity of follow-up validation studies. In this paper, we present a novel daptive multivariate two-sample test for icrobiome ifferential nalysis () to examine whether the composition of a taxa-set are different between two conditions. Our simulation studies and real data applications demonstrated that the AMDA test was often more powerful than several competing methods while preserving the correct type I error rate. A free implementation of our AMDA method in R software is available at https://github.com/xyz5074/AMDA.

摘要

差异丰度分析是许多微生物组研究中的一项关键任务,其核心目标是识别与某些生物学或临床状况相关的微生物组分类群。微生物组差异丰度分析有两种不同模式:基于个体的单变量差异丰度分析和基于组的多变量差异丰度分析。单变量分析在某些统计误差度量(如错误发现率)下识别经过多重校正的差异丰富微生物组分类群,这通常因分类群的高维度和分类群之间复杂的相关结构而变得复杂。多变量分析评估两种条件下微生物组组成丰度的总体变化,这为后续验证研究的必要性提供了有用的初步差异信息。在本文中,我们提出了一种用于微生物组差异分析的新型自适应多变量两样本检验(AMDA),以检验两个条件下一个分类群集的组成是否不同。我们的模拟研究和实际数据应用表明,AMDA检验在保持正确的I型错误率的同时,通常比几种竞争方法更具功效。我们的AMDA方法在R软件中的免费实现可在https://github.com/xyz5074/AMDA获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eaef/6491633/0f9c2e51afd1/fgene-10-00350-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验