Suppr超能文献

视觉探索过程中灵长类动物内嗅皮层的扫视方向编码

Saccade direction encoding in the primate entorhinal cortex during visual exploration.

作者信息

Killian Nathaniel J, Potter Steve M, Buffalo Elizabeth A

机构信息

Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114; Yerkes National Primate Research Center, Atlanta, GA 30329; Laboratory for Neuroengineering, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332;

Laboratory for Neuroengineering, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332;

出版信息

Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15743-8. doi: 10.1073/pnas.1417059112. Epub 2015 Dec 7.

Abstract

We recently demonstrated that position in visual space is represented by grid cells in the primate entorhinal cortex (EC), suggesting that visual exploration of complex scenes in primates may employ signaling mechanisms similar to those used during exploration of physical space via movement in rodents. Here, we describe a group of saccade direction (SD) cells that encode eye movement information in the monkey EC during free-viewing of complex images. Significant saccade direction encoding was found in 20% of the cells recorded in the posterior EC. SD cells were generally broadly tuned and two largely separate populations of SD cells encoded future and previous saccade direction. Some properties of these cells resemble those of head-direction cells in rodent EC, suggesting that the same neural circuitry may be capable of performing homologous spatial computations under different exploratory contexts.

摘要

我们最近证明,灵长类动物内嗅皮层(EC)中的网格细胞可表征视觉空间中的位置,这表明灵长类动物对复杂场景的视觉探索可能采用与啮齿动物通过移动探索物理空间时所使用的类似信号机制。在此,我们描述了一组扫视方向(SD)细胞,它们在猴子自由观看复杂图像期间在其EC中编码眼球运动信息。在后侧EC中记录的细胞中有20%发现有显著的扫视方向编码。SD细胞通常具有广泛的调谐,并且两个大致分开的SD细胞群体编码未来和先前的扫视方向。这些细胞的一些特性类似于啮齿动物EC中的头部方向细胞,这表明相同的神经回路可能能够在不同的探索背景下执行同源的空间计算。

相似文献

1
Saccade direction encoding in the primate entorhinal cortex during visual exploration.
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15743-8. doi: 10.1073/pnas.1417059112. Epub 2015 Dec 7.
2
Neurons in Primate Entorhinal Cortex Represent Gaze Position in Multiple Spatial Reference Frames.
J Neurosci. 2018 Mar 7;38(10):2430-2441. doi: 10.1523/JNEUROSCI.2432-17.2018. Epub 2018 Jan 31.
3
A map of visual space in the primate entorhinal cortex.
Nature. 2012 Nov 29;491(7426):761-4. doi: 10.1038/nature11587. Epub 2012 Oct 28.
4
Analysis of perisaccadic field potentials in the occipitotemporal pathway during active vision.
J Neurophysiol. 2003 Nov;90(5):3455-78. doi: 10.1152/jn.00011.2003. Epub 2003 Jul 23.
5
Combination of neuronal signals representing object-centered location and saccade direction in macaque supplementary eye field.
J Neurophysiol. 2007 May;97(5):3554-66. doi: 10.1152/jn.00061.2007. Epub 2007 Feb 28.
6
Anatomy and Function of the Primate Entorhinal Cortex.
Annu Rev Vis Sci. 2020 Sep 15;6:411-432. doi: 10.1146/annurev-vision-030320-041115. Epub 2020 Jun 24.
7
Head direction is coded more strongly than movement direction in a population of entorhinal neurons.
Brain Res. 2015 Sep 24;1621:355-67. doi: 10.1016/j.brainres.2014.10.053. Epub 2014 Nov 1.
8
Updating of the visual representation in monkey striate and extrastriate cortex during saccades.
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):4026-31. doi: 10.1073/pnas.052379899.
9
Spatial updating in area LIP is independent of saccade direction.
J Neurophysiol. 2006 May;95(5):2751-67. doi: 10.1152/jn.00054.2005. Epub 2005 Nov 16.
10
Conjunctive representation of position, direction, and velocity in entorhinal cortex.
Science. 2006 May 5;312(5774):758-62. doi: 10.1126/science.1125572.

引用本文的文献

1
A Theory and Model of Scene Representations With Hippocampal Spatial View Cells.
Hippocampus. 2025 May;35(3):e70013. doi: 10.1002/hipo.70013.
2
Episodic and associative memory from spatial scaffolds in the hippocampus.
Nature. 2025 Feb;638(8051):739-751. doi: 10.1038/s41586-024-08392-y. Epub 2025 Jan 15.
3
Visual Exploration and the Primate Hippocampal Formation.
Hippocampus. 2025 Jan;35(1):e23673. doi: 10.1002/hipo.23673.
4
Interactions between neural representations of the social and spatial environment.
Philos Trans R Soc Lond B Biol Sci. 2024 Oct 21;379(1912):20220522. doi: 10.1098/rstb.2022.0522. Epub 2024 Sep 4.
5
Electrophysiological signatures of veridical head direction in humans.
Nat Hum Behav. 2024 Jul;8(7):1334-1350. doi: 10.1038/s41562-024-01872-1. Epub 2024 May 6.
6
Spontaneous eye movements reflect the representational geometries of conceptual spaces.
Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2403858121. doi: 10.1073/pnas.2403858121. Epub 2024 Apr 18.
7
Modulation of Neuronal Activity and Saccades at Theta Rhythm During Visual Search in Non-human Primates.
Neurosci Bull. 2022 Oct;38(10):1183-1198. doi: 10.1007/s12264-022-00884-z. Epub 2022 May 24.
8
Orientation Invariant Sensorimotor Object Recognition Using Cortical Grid Cells.
Front Neural Circuits. 2022 Jan 26;15:738137. doi: 10.3389/fncir.2021.738137. eCollection 2021.
9
Human Variation in Error-Based and Reinforcement Motor Learning Is Associated With Entorhinal Volume.
Cereb Cortex. 2022 Aug 3;32(16):3423-3440. doi: 10.1093/cercor/bhab424.
10
Resolving visual motion through perceptual gaps.
Trends Cogn Sci. 2021 Nov;25(11):978-991. doi: 10.1016/j.tics.2021.07.017. Epub 2021 Sep 3.

本文引用的文献

1
Head direction is coded more strongly than movement direction in a population of entorhinal neurons.
Brain Res. 2015 Sep 24;1621:355-67. doi: 10.1016/j.brainres.2014.10.053. Epub 2014 Nov 1.
2
Grid cells and cortical representation.
Nat Rev Neurosci. 2014 Jul;15(7):466-81. doi: 10.1038/nrn3766. Epub 2014 Jun 11.
3
Topography of head direction cells in medial entorhinal cortex.
Curr Biol. 2014 Feb 3;24(3):252-62. doi: 10.1016/j.cub.2013.12.002. Epub 2014 Jan 16.
4
Direct recordings of grid-like neuronal activity in human spatial navigation.
Nat Neurosci. 2013 Sep;16(9):1188-90. doi: 10.1038/nn.3466. Epub 2013 Aug 4.
5
Oscillatory activity in the monkey hippocampus during visual exploration and memory formation.
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13144-9. doi: 10.1073/pnas.1302351110. Epub 2013 Jul 22.
6
Saliency and saccade encoding in the frontal eye field during natural scene search.
Cereb Cortex. 2014 Dec;24(12):3232-45. doi: 10.1093/cercor/bht179. Epub 2013 Jul 17.
7
Rats maintain an overhead binocular field at the expense of constant fusion.
Nature. 2013 Jun 6;498(7452):65-9. doi: 10.1038/nature12153. Epub 2013 May 26.
8
Contrasting effects on path integration after hippocampal damage in humans and rats.
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4732-7. doi: 10.1073/pnas.1300869110. Epub 2013 Feb 12.
9
The nucleus prepositus predominantly outputs eye movement-related information during passive and active self-motion.
J Neurophysiol. 2013 Apr;109(7):1900-11. doi: 10.1152/jn.00788.2012. Epub 2013 Jan 16.
10
A map of visual space in the primate entorhinal cortex.
Nature. 2012 Nov 29;491(7426):761-4. doi: 10.1038/nature11587. Epub 2012 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验