Suppr超能文献

在一群内嗅皮层神经元中,头部方向的编码比运动方向更强。

Head direction is coded more strongly than movement direction in a population of entorhinal neurons.

作者信息

Raudies Florian, Brandon Mark P, Chapman G William, Hasselmo Michael E

机构信息

Center for Computational Neuroscience and Neural Technology, Boston University, 677 Beacon Street, Boston, MA 02115, USA; Center of Excellence for Learning in Education, Science, and Technology, Boston University, 677 Beacon Street, Boston, MA 02115, USA.

Division of Biological Science, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0357, USA.

出版信息

Brain Res. 2015 Sep 24;1621:355-67. doi: 10.1016/j.brainres.2014.10.053. Epub 2014 Nov 1.

Abstract

The spatial firing pattern of entorhinal grid cells may be important for navigation. Many different computational models of grid cell firing use path integration based on movement direction and the associated movement speed to drive grid cells. However, the response of neurons to movement direction has rarely been tested, in contrast to multiple studies showing responses of neurons to head direction. Here, we analyzed the difference between head direction and movement direction during rat movement and analyzed cells recorded from entorhinal cortex for their tuning to movement direction. During foraging behavior, movement direction differs significantly from head direction. The analysis of neuron responses shows that only 5 out of 758 medial entorhinal cells show significant coding for both movement direction and head direction when evaluating periods of rat behavior with speeds above 10 cm/s and ±30° angular difference between movement and head direction. None of the cells coded movement direction alone. In contrast, 21 cells in this population coded only head direction during behavioral epochs with these constraints, indicating much stronger coding of head direction in this population. This suggests that the movement direction signal required by most grid cell models may arise from other brain structures than the medial entorhinal cortex. This article is part of a Special Issue entitled SI: Brain and Memory.

摘要

内嗅网格细胞的空间放电模式可能对导航很重要。许多不同的网格细胞放电计算模型使用基于运动方向和相关运动速度的路径积分来驱动网格细胞。然而,与多项显示神经元对头方向有反应的研究相比,神经元对运动方向的反应很少得到测试。在这里,我们分析了大鼠运动过程中头方向和运动方向之间的差异,并分析了从内嗅皮层记录的细胞对运动方向的调谐。在觅食行为期间,运动方向与头方向有显著差异。对神经元反应的分析表明,在评估大鼠行为速度高于10厘米/秒且运动与头方向之间角度差为±30°的时间段时,758个内侧内嗅细胞中只有5个对运动方向和头方向都有显著编码。没有细胞单独编码运动方向。相比之下,在这些限制条件下的行为阶段,该群体中有21个细胞仅编码头方向,表明该群体对头方向的编码要强得多。这表明大多数网格细胞模型所需的运动方向信号可能来自内侧内嗅皮层以外的其他脑结构。本文是名为“SI:大脑与记忆”的特刊的一部分。

相似文献

6
Speed cells in the medial entorhinal cortex.中脑内侧缰核中的快细胞。
Nature. 2015 Jul 23;523(7561):419-24. doi: 10.1038/nature14622. Epub 2015 Jul 15.
8
Home, head direction stability, and grid cell distortion.家、头部方向稳定性和网格细胞变形。
J Neurophysiol. 2020 Apr 1;123(4):1392-1406. doi: 10.1152/jn.00518.2019. Epub 2020 Feb 26.

引用本文的文献

2
Spatial memory and learning: investigating the role of dynamic visual acuity.空间记忆与学习:探究动态视敏度的作用。
Front Behav Neurosci. 2024 Aug 29;18:1429069. doi: 10.3389/fnbeh.2024.1429069. eCollection 2024.
3
Investigating Egocentric Tuning in Hippocampal CA1 Neurons.研究海马 CA1 神经元的自我中心调谐。
J Neurosci. 2024 Sep 18;44(38):e0040242024. doi: 10.1523/JNEUROSCI.0040-24.2024.
7
Overestimation in angular path integration precedes Alzheimer's dementia.角度路径整合的高估先于阿尔茨海默病痴呆。
Curr Biol. 2023 Nov 6;33(21):4650-4661.e7. doi: 10.1016/j.cub.2023.09.047. Epub 2023 Oct 11.
10
Ripple band phase precession of place cell firing during replay.涟漪带相位在重放期间位置细胞放电的进动。
Curr Biol. 2022 Jan 10;32(1):64-73.e5. doi: 10.1016/j.cub.2021.10.033. Epub 2021 Nov 2.

本文引用的文献

5
Grid cells require excitatory drive from the hippocampus.网格细胞需要来自海马体的兴奋性驱动。
Nat Neurosci. 2013 Mar;16(3):309-17. doi: 10.1038/nn.3311. Epub 2013 Jan 20.
8
How vision and movement combine in the hippocampal place code.视觉和运动如何在海马体位置码中结合。
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):378-83. doi: 10.1073/pnas.1215834110. Epub 2012 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验