Suppr超能文献

灵长类动物内嗅皮层中的神经元在多个空间参照系中代表注视位置。

Neurons in Primate Entorhinal Cortex Represent Gaze Position in Multiple Spatial Reference Frames.

机构信息

Washington National Primate Research Center, Seattle, Washington 98195; Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195; and University of Washington School of Medicine, Seattle, Washington 98195

Washington National Primate Research Center, Seattle, Washington 98195; Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195; and University of Washington School of Medicine, Seattle, Washington 98195.

出版信息

J Neurosci. 2018 Mar 7;38(10):2430-2441. doi: 10.1523/JNEUROSCI.2432-17.2018. Epub 2018 Jan 31.

Abstract

Primates rely predominantly on vision to gather information from the environment and neurons representing visual space and gaze position are found in many brain areas. Within the medial temporal lobe, a brain region critical for memory, neurons in the entorhinal cortex of macaque monkeys exhibit spatial selectivity for gaze position. Specifically, the firing rate of single neurons reflects fixation location within a visual image (Killian et al., 2012). In the rodents, entorhinal cells such as grid cells, border cells, and head direction cells show spatial representations aligned to visual environmental features instead of the body (Hafting et al., 2005; Sargolini et al., 2006; Solstad et al., 2008; Diehl et al., 2017). However, it is not known whether similar allocentric representations exist in primate entorhinal cortex. Here, we recorded neural activity in the entorhinal cortex in two male rhesus monkeys during a naturalistic, free-viewing task. Our data reveal that a majority of entorhinal neurons represent gaze position and that simultaneously recorded neurons represent gaze position relative to distinct spatial reference frames, with some neurons aligned to the visual image and others aligned to the monkey's head position. Our results also show that entorhinal neural activity can be used to predict gaze position with a high degree of accuracy. These findings demonstrate that visuospatial representation is a fundamental property of entorhinal neurons in primates and suggest that entorhinal cortex may support relational memory and motor planning by coding attentional locus in distinct, behaviorally relevant frames of reference. The entorhinal cortex, a brain area important for memory, shows striking spatial activity in rodents through grid cells, border cells, head direction cells, and nongrid spatial cells. The majority of entorhinal neurons signal the location of a rodent relative to visual environmental cues, representing the location of the animal relative to space in the world instead of the body. Recently, we found that entorhinal neurons can signal location of gaze while a monkey explores images visually. Here, we report that spatial entorhinal neurons are widespread in the monkey and these neurons are capable of showing a world-based spatial reference frame locked to the bounds of explored images. These results help connect the extensive findings in rodents to the primate.

摘要

灵长类动物主要依赖视觉从环境中获取信息,许多大脑区域都存在代表视觉空间和注视位置的神经元。在大脑内侧颞叶这个对记忆至关重要的区域,猕猴的内嗅皮层中的神经元对注视位置具有空间选择性。具体来说,单个神经元的放电率反映了视觉图像内的注视位置(Killian 等人,2012 年)。在啮齿动物中,网格细胞、边界细胞和头部方向细胞等内嗅细胞表现出与视觉环境特征对齐的空间表示,而不是与身体对齐(Hafting 等人,2005 年;Sargolini 等人,2006 年;Solstad 等人,2008 年;Diehl 等人,2017 年)。然而,目前尚不清楚在灵长类动物的内嗅皮层中是否存在类似的无参照系表示。在这里,我们在两只雄性恒河猴进行自然观看任务时记录了内嗅皮层的神经活动。我们的数据表明,大多数内嗅神经元表示注视位置,同时记录的神经元表示相对于不同空间参照系的注视位置,一些神经元与视觉图像对齐,另一些神经元与猴子的头部位置对齐。我们的结果还表明,内嗅神经活动可以高度准确地预测注视位置。这些发现表明,视觉空间表示是灵长类动物内嗅神经元的基本特性,并表明内嗅皮层可能通过在不同的、与行为相关的参照系中编码注意力位置来支持关系记忆和运动规划。内嗅皮层是大脑中与记忆有关的重要区域,在啮齿动物中通过网格细胞、边界细胞、头部方向细胞和非网格空间细胞表现出惊人的空间活动。大多数内嗅神经元表示相对于视觉环境线索的啮齿动物位置,代表动物相对于世界空间而不是身体的位置。最近,我们发现猴子在视觉探索图像时,内嗅神经元可以发出注视位置的信号。在这里,我们报告说,在猴子中,空间内嗅神经元分布广泛,这些神经元能够显示出与探索图像边界锁定的基于世界的空间参照系。这些结果有助于将啮齿动物中的广泛发现与灵长类动物联系起来。

相似文献

1
Neurons in Primate Entorhinal Cortex Represent Gaze Position in Multiple Spatial Reference Frames.
J Neurosci. 2018 Mar 7;38(10):2430-2441. doi: 10.1523/JNEUROSCI.2432-17.2018. Epub 2018 Jan 31.
2
Memory System Neurons Represent Gaze Position and the Visual World.
J Exp Neurosci. 2018 Jul 16;12:1179069518787484. doi: 10.1177/1179069518787484. eCollection 2018.
3
Eye position signals in the dorsal pulvinar during fixation and goal-directed saccades.
J Neurophysiol. 2020 Jan 1;123(1):367-391. doi: 10.1152/jn.00432.2019. Epub 2019 Nov 20.
4
Saccade direction encoding in the primate entorhinal cortex during visual exploration.
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15743-8. doi: 10.1073/pnas.1417059112. Epub 2015 Dec 7.
6
A map of visual space in the primate entorhinal cortex.
Nature. 2012 Nov 29;491(7426):761-4. doi: 10.1038/nature11587. Epub 2012 Oct 28.
7
Motor intention activity in the macaque's lateral intraparietal area. II. Changes of motor plan.
J Neurophysiol. 1996 Sep;76(3):1457-64. doi: 10.1152/jn.1996.76.3.1457.
8
9
Visuomotor coordination and motor representation by human temporal lobe neurons.
J Cogn Neurosci. 2012 Mar;24(3):600-10. doi: 10.1162/jocn_a_00160. Epub 2011 Nov 8.
10
Transition from Target to Gaze Coding in Primate Frontal Eye Field during Memory Delay and Memory-Motor Transformation.
eNeuro. 2016 Apr 13;3(2). doi: 10.1523/ENEURO.0040-16.2016. eCollection 2016 Mar-Apr.

引用本文的文献

1
Electrode Arrays for Detecting and Modulating Deep Brain Neural Information in Primates: A Review.
Cyborg Bionic Syst. 2025 May 2;6:0249. doi: 10.34133/cbsystems.0249. eCollection 2025.
2
A Theory and Model of Scene Representations With Hippocampal Spatial View Cells.
Hippocampus. 2025 May;35(3):e70013. doi: 10.1002/hipo.70013.
3
Visual Exploration and the Primate Hippocampal Formation.
Hippocampus. 2025 Jan;35(1):e23673. doi: 10.1002/hipo.23673.
4
The medial entorhinal cortex encodes multisensory spatial information.
Cell Rep. 2024 Oct 22;43(10):114813. doi: 10.1016/j.celrep.2024.114813. Epub 2024 Oct 11.
5
Electrophysiological signatures of veridical head direction in humans.
Nat Hum Behav. 2024 Jul;8(7):1334-1350. doi: 10.1038/s41562-024-01872-1. Epub 2024 May 6.
6
Grid cells: the missing link in understanding Parkinson's disease?
Front Neurosci. 2024 Feb 8;18:1276714. doi: 10.3389/fnins.2024.1276714. eCollection 2024.
7
Sequential involvements of the perirhinal cortex and hippocampus in the recall of item-location associative memory in macaques.
PLoS Biol. 2023 Jun 8;21(6):e3002145. doi: 10.1371/journal.pbio.3002145. eCollection 2023 Jun.
8
Computational cross-species views of the hippocampal formation.
Hippocampus. 2023 May;33(5):586-599. doi: 10.1002/hipo.23535. Epub 2023 Apr 11.
10
Linking global top-down views to first-person views in the brain.
Proc Natl Acad Sci U S A. 2022 Nov 8;119(45):e2202024119. doi: 10.1073/pnas.2202024119. Epub 2022 Nov 2.

本文引用的文献

1
Medial temporal lobe and topographical memory.
Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):8626-8630. doi: 10.1073/pnas.1708963114. Epub 2017 Jul 24.
2
Cortical Activation during Landmark-Centered vs. Gaze-Centered Memory of Saccade Targets in the Human: An FMRI Study.
Front Syst Neurosci. 2017 Jun 23;11:44. doi: 10.3389/fnsys.2017.00044. eCollection 2017.
4
Framing of grid cells within and beyond navigation boundaries.
Elife. 2017 Jan 13;6:e21354. doi: 10.7554/eLife.21354.
5
Megamap: flexible representation of a large space embedded with nonspatial information by a hippocampal attractor network.
J Neurophysiol. 2016 Aug 1;116(2):868-91. doi: 10.1152/jn.00856.2015. Epub 2016 May 18.
6
Getting directions from the hippocampus: The neural connection between looking and memory.
Neurobiol Learn Mem. 2016 Oct;134 Pt A(Pt A):135-144. doi: 10.1016/j.nlm.2015.12.004. Epub 2015 Dec 29.
7
Saccade direction encoding in the primate entorhinal cortex during visual exploration.
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15743-8. doi: 10.1073/pnas.1417059112. Epub 2015 Dec 7.
9
Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9466-71. doi: 10.1073/pnas.1511668112. Epub 2015 Jul 13.
10
Shearing-induced asymmetry in entorhinal grid cells.
Nature. 2015 Feb 12;518(7538):207-12. doi: 10.1038/nature14151.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验