Suppr超能文献

酵母中的锰耐受性涉及多聚磷酸盐、镁和液泡变化。

Manganese tolerance in yeasts involves polyphosphate, magnesium, and vacuolar alterations.

作者信息

Ryazanova Lubov, Zvonarev Anton, Rusakova Tatiana, Dmitriev Vladimir, Kulakovskaya Tatiana

机构信息

Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, 142290, Russia.

出版信息

Folia Microbiol (Praha). 2016 Jul;61(4):311-7. doi: 10.1007/s12223-015-0440-9. Epub 2015 Dec 8.

Abstract

Basidiomycetous and ascomycetous yeast species were tested for manganese tolerance. Basidiomycetous Cryptococcus humicola, Cryptococcus terricola, Cryptococcus curvatus and ascomycetous Candida maltosa, Kluyveromyces marxianus, Kuraishia capsulata, Lindnera fabianii and Sacharomyces cerevisiae were able to grow at manganese excess (2.5 mmol/L), while the growth of basidiomycetous Rhodotorula bogoriensis was completely suppressed. The lag phase duration increased and the exponential growth rate decreased at manganese excess. The increase of cell size and enlargement of vacuoles were characteristics for the cells grown at manganese excess. The alterations in inorganic polyphosphate content and cellular localization were studied. L. fabianii, K. capsulata, C. maltosa, and Cr. humicola accumulated the higher amounts of inorganic polyphosphates, while Cr. terricola and Cr. curvatus demonstrated no such accumulation. The polyphosphate content in the cell wall tested by DAPI staining increased in all species under the study; however, this effect was more pronounced in Cr. terricola and Cr. curvatus. The accumulation of Mg(2+) in the cell wall under Mn(2+) excess was observed in Cr. humicola, Cr. curvatus and Cr. terricola. The accumulation of polyphosphate and magnesium in the cell wall was supposed to be a factor of manganese tolerance in yeasts.

摘要

对担子菌酵母和子囊菌酵母菌种进行了锰耐受性测试。担子菌的土生隐球菌、土壤隐球菌、弯隐球菌以及子囊菌的麦芽糖假丝酵母、马克斯克鲁维酵母、荚膜库德毕赤酵母、法氏林德纳酵母和酿酒酵母能够在锰过量(2.5 mmol/L)的条件下生长,而担子菌的博戈里红酵母的生长则完全受到抑制。在锰过量的情况下,延滞期持续时间延长,指数生长速率降低。细胞大小增加和液泡增大是在锰过量条件下生长的细胞的特征。研究了无机多聚磷酸盐含量和细胞定位的变化。法氏林德纳酵母、荚膜库德毕赤酵母、麦芽糖假丝酵母和土生隐球菌积累了较高量的无机多聚磷酸盐,而土壤隐球菌和弯隐球菌则没有这种积累。通过DAPI染色检测,在所研究的所有菌种中,细胞壁中的多聚磷酸盐含量均增加;然而,这种效应在土壤隐球菌和弯隐球菌中更为明显。在土生隐球菌、弯隐球菌和土壤隐球菌中观察到在锰过量条件下细胞壁中镁离子的积累。细胞壁中多聚磷酸盐和镁的积累被认为是酵母对锰耐受性的一个因素。

相似文献

1
Manganese tolerance in yeasts involves polyphosphate, magnesium, and vacuolar alterations.
Folia Microbiol (Praha). 2016 Jul;61(4):311-7. doi: 10.1007/s12223-015-0440-9. Epub 2015 Dec 8.
2
Cytoplasmic inorganic polyphosphate participates in the heavy metal tolerance of Cryptococcus humicola.
Folia Microbiol (Praha). 2014 Sep;59(5):381-9. doi: 10.1007/s12223-014-0310-x. Epub 2014 Feb 16.
3
Accumulation of phosphate and polyphosphate by Cryptococcus humicola and Saccharomyces cerevisiae in the absence of nitrogen.
FEMS Yeast Res. 2012 Sep;12(6):617-24. doi: 10.1111/j.1567-1364.2012.00812.x. Epub 2012 May 28.
4
[Selenium tolerance of yeasts].
Mikrobiologiia. 2002 Jul-Aug;71(4):455-9.
6
Yeasts associated with an abandoned mining area in Pernek and their tolerance to different chemical elements.
Folia Microbiol (Praha). 2016 May;61(3):199-207. doi: 10.1007/s12223-015-0424-9. Epub 2015 Sep 10.
7
The biosorption of cadmium and cobalt and iron ions by yeast Cryptococcus humicola at nitrogen starvation.
Folia Microbiol (Praha). 2018 Jul;63(4):507-510. doi: 10.1007/s12223-018-0583-6. Epub 2018 Jan 19.
8
Adaptation of Saccharomyces cerevisiae to toxic manganese concentration triggers changes in inorganic polyphosphates.
FEMS Yeast Res. 2013 Aug;13(5):463-70. doi: 10.1111/1567-1364.12049. Epub 2013 Jun 3.
9
Involvement of Spt7p in vacuolar polyphosphate level of Saccharomyces cerevisiae.
Biochem Biophys Res Commun. 1999 Apr 21;257(3):835-8. doi: 10.1006/bbrc.1999.0541.
10

引用本文的文献

1
The acid phosphatase Pho5 of Saccharomyces cerevisiae is not involved in polyphosphate breakdown.
Folia Microbiol (Praha). 2019 Nov;64(6):867-873. doi: 10.1007/s12223-019-00702-6. Epub 2019 Apr 1.
2
Inorganic polyphosphates and heavy metal resistance in microorganisms.
World J Microbiol Biotechnol. 2018 Aug 27;34(9):139. doi: 10.1007/s11274-018-2523-7.

本文引用的文献

1
Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes.
Fungal Genet Biol. 2014 Jun;67:3-14. doi: 10.1016/j.fgb.2014.03.003. Epub 2014 Mar 25.
2
Cytoplasmic inorganic polyphosphate participates in the heavy metal tolerance of Cryptococcus humicola.
Folia Microbiol (Praha). 2014 Sep;59(5):381-9. doi: 10.1007/s12223-014-0310-x. Epub 2014 Feb 16.
4
Adaptation of Saccharomyces cerevisiae to toxic manganese concentration triggers changes in inorganic polyphosphates.
FEMS Yeast Res. 2013 Aug;13(5):463-70. doi: 10.1111/1567-1364.12049. Epub 2013 Jun 3.
6
Accumulation of phosphate and polyphosphate by Cryptococcus humicola and Saccharomyces cerevisiae in the absence of nitrogen.
FEMS Yeast Res. 2012 Sep;12(6):617-24. doi: 10.1111/j.1567-1364.2012.00812.x. Epub 2012 May 28.
7
Polyphosphate--an ancient energy source and active metabolic regulator.
Microb Cell Fact. 2011 Aug 4;10:63. doi: 10.1186/1475-2859-10-63.
8
Effects of small increases in copper levels on culturable basidiomycetous yeasts in low-nutrient soils.
J Appl Microbiol. 2010 Oct;109(4):1411-21. doi: 10.1111/j.1365-2672.2010.04770.x. Epub 2010 Aug 19.
9
Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: glutathione as detoxifying agent.
Environ Monit Assess. 2011 Mar;174(1-4):585-95. doi: 10.1007/s10661-010-1480-x. Epub 2010 May 26.
10
How Saccharomyces cerevisiae copes with toxic metals and metalloids.
FEMS Microbiol Rev. 2010 Nov;34(6):925-51. doi: 10.1111/j.1574-6976.2010.00217.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验