Suppr超能文献

再探藻菌的光受体:几种白色领结蛋白赋予其对蓝、红光的敏感性,并控制动态范围和适应能力。

Light reception of Phycomyces revisited: several white collar proteins confer blue- and red-light sensitivity and control dynamic range and adaptation.

机构信息

Fachbereich Biologie, Philipps-Universität Marburg, 35032, Marburg, Germany.

Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain.

出版信息

Photochem Photobiol Sci. 2024 Aug;23(8):1587-1607. doi: 10.1007/s43630-024-00604-8. Epub 2024 Jul 13.

Abstract

The giant-fruiting body, sporangiophore, of the fungus Phycomyces blakesleeanus grows toward near-UV/blue-light (phototropism). The blue-light photoreceptor, MadA, should contain FAD bound to the LOV domain, and forms a complex with MadB. Both proteins are homologs of white collar proteins WC-1 and WC-2 from the fungus Neurospora crassa and should be localized in nuclei, where they function as a light-sensitive transcription factor complex. The photoreceptor properties of two further Wc proteins, WcoA and WcoB, remain unclear because of lack of mutants. We propose that WcoA and/or WcoB play essential roles in photoreception by enlarging the dynamic range that help explain complex stimulus-response relationships. Even though red light does not elicit photo-movement or -differentiation in Phycomyces, it affects the effectiveness of blue light which indicates an underlying photochromic receptor. Protein sequence searches show that other fungal red-light receptors are absent in Phycomyces. The solution to the red-light riddle is thus sought in the ability of Wc complexes to generate after blue-light irradiation a neutral flavosemiquinone radical that absorbs red light and functions as primary photochemical signal. Phototropism requires Ras-GAP (MadC) as part of the signal transduction cascade and, we propose, to allocate photoreceptors in the plasmalemma of the growing zone, which allows for receptor dichroism, range adjustment and contrast recognition for spatial orientation. Phototropic signal chains must entail transduction networks between Wc receptors and small G-proteins and their associated Ras-GAP and Ras-GEF proteins. The interactions among these proteins should occur in trans-Golgi vesicles and the plasmalemma of the growing zone.

摘要

真菌 Phycomyces blakesleeanus 的大型生殖体、孢子梗向近紫外/蓝光(向光性)生长。蓝光光受体 MadA 应含有结合 LOV 结构域的 FAD,并与 MadB 形成复合物。这两种蛋白质都是真菌 Neurospora crassa 中 white collar 蛋白 WC-1 和 WC-2 的同源物,应该定位于细胞核中,在那里它们作为光敏感转录因子复合物发挥作用。由于缺乏突变体,两个进一步的 Wc 蛋白 WcoA 和 WcoB 的光受体特性仍不清楚。我们提出,WcoA 和/或 WcoB 通过扩大动态范围来发挥在光受体中的关键作用,这有助于解释复杂的刺激-反应关系。尽管红光不会在 Phycomyces 中引起光运动或光分化,但它会影响蓝光的有效性,这表明存在潜在的光变色受体。蛋白序列搜索表明,其他真菌的红光受体在 Phycomyces 中不存在。因此,解决红光之谜的方法在于 Wc 复合物在蓝光照射后产生中性黄素半醌自由基的能力,该自由基吸收红光并作为初级光化学信号发挥作用。向光性需要 Ras-GAP(MadC)作为信号转导级联的一部分,我们提出,将光受体分配到生长区的质膜中,这允许受体二色性、范围调整和对比度识别用于空间定向。光信号链必须涉及 Wc 受体与小 G 蛋白及其相关的 Ras-GAP 和 Ras-GEF 蛋白之间的转导网络。这些蛋白之间的相互作用应该发生在高尔基体内小泡和生长区的质膜中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验