Suppr超能文献

基于模型的迭代重建用于具有焦点模糊、探测器模糊和相关噪声的平板锥形束CT

Model-based iterative reconstruction for flat-panel cone-beam CT with focal spot blur, detector blur, and correlated noise.

作者信息

Tilley Steven, Siewerdsen Jeffrey H, Stayman J Webster

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.

出版信息

Phys Med Biol. 2016 Jan 7;61(1):296-319. doi: 10.1088/0031-9155/61/1/296. Epub 2015 Dec 9.

Abstract

While model-based reconstruction methods have been successfully applied to flat-panel cone-beam CT (FP-CBCT) systems, typical implementations ignore both spatial correlations in the projection data as well as system blurs due to the detector and focal spot in the x-ray source. In this work, we develop a forward model for flat-panel-based systems that includes blur and noise correlation associated with finite focal spot size and an indirect detector (e.g. scintillator). This forward model is used to develop a staged reconstruction framework where projection data are deconvolved and log-transformed, followed by a generalized least-squares reconstruction that utilizes a non-diagonal statistical weighting to account for the correlation that arises from the acquisition and data processing chain. We investigate the performance of this novel reconstruction approach in both simulated data and in CBCT test-bench data. In comparison to traditional filtered backprojection and model-based methods that ignore noise correlation, the proposed approach yields a superior noise-resolution tradeoff. For example, for a system with 0.34 mm FWHM scintillator blur and 0.70 FWHM focal spot blur, using the correlated noise model instead of an uncorrelated noise model increased resolution by 42% (with variance matched at 6.9  ×  10(-8) mm(-2)). While this advantage holds across a wide range of systems with differing blur characteristics, the improvements are greatest for systems where source blur is larger than detector blur.

摘要

虽然基于模型的重建方法已成功应用于平板锥束CT(FP-CBCT)系统,但典型的实现方式既忽略了投影数据中的空间相关性,也忽略了由于探测器和X射线源中的焦点造成的系统模糊。在这项工作中,我们为基于平板的系统开发了一个正向模型,该模型包括与有限焦点尺寸和间接探测器(例如闪烁体)相关的模糊和噪声相关性。这个正向模型用于开发一个分阶段的重建框架,其中投影数据先进行去卷积和对数变换,然后是广义最小二乘重建,该重建利用非对角统计加权来考虑采集和数据处理链中产生的相关性。我们在模拟数据和CBCT测试台数据中研究了这种新型重建方法的性能。与忽略噪声相关性的传统滤波反投影和基于模型的方法相比,所提出的方法在噪声分辨率权衡方面表现更优。例如,对于一个具有0.34毫米半高宽闪烁体模糊和0.70半高宽焦点模糊的系统,使用相关噪声模型而不是不相关噪声模型可将分辨率提高42%(方差匹配为6.9×10(-8)毫米(-2))。虽然这种优势在具有不同模糊特性的广泛系统中都成立,但对于源模糊大于探测器模糊的系统,改进最为显著。

相似文献

1
Model-based iterative reconstruction for flat-panel cone-beam CT with focal spot blur, detector blur, and correlated noise.
Phys Med Biol. 2016 Jan 7;61(1):296-319. doi: 10.1088/0031-9155/61/1/296. Epub 2015 Dec 9.
2
Predicting image properties in penalized-likelihood reconstructions of flat-panel CBCT.
Med Phys. 2019 Jan;46(1):65-80. doi: 10.1002/mp.13249. Epub 2018 Nov 20.
3
Penalized-Likelihood Reconstruction With High-Fidelity Measurement Models for High-Resolution Cone-Beam Imaging.
IEEE Trans Med Imaging. 2018 Apr;37(4):988-999. doi: 10.1109/TMI.2017.2779406.
4
High-resolution model-based material decomposition in dual-layer flat-panel CBCT.
Med Phys. 2021 Oct;48(10):6375-6387. doi: 10.1002/mp.14894. Epub 2021 Jul 17.
5
Iterative CT Reconstruction using Models of Source and Detector Blur and Correlated Noise.
Conf Proc Int Conf Image Form Xray Comput Tomogr. 2014;2014:363-367.
6
Effects of ray profile modeling on resolution recovery in clinical CT.
Med Phys. 2014 Feb;41(2):021907. doi: 10.1118/1.4862510.
7
Simultaneous deblurring and iterative reconstruction of CBCT for image guided brain radiosurgery.
Phys Med Biol. 2017 Apr 7;62(7):2521-2541. doi: 10.1088/1361-6560/aa5ed2. Epub 2017 Mar 1.
8
Generalized Least-Squares CT Reconstruction with Detector Blur and Correlated Noise Models.
Proc SPIE Int Soc Opt Eng. 2014 Mar 19;9033:903335. doi: 10.1117/12.2043067.
9
Statistical reconstruction for cone-beam CT with a post-artifact-correction noise model: application to high-quality head imaging.
Phys Med Biol. 2015 Aug 21;60(16):6153-75. doi: 10.1088/0031-9155/60/16/6153. Epub 2015 Jul 30.
10
Modeling and evaluation of a high-resolution CMOS detector for cone-beam CT of the extremities.
Med Phys. 2018 Jan;45(1):114-130. doi: 10.1002/mp.12654. Epub 2017 Nov 27.

引用本文的文献

1
Diffusion Posterior Sampling for Nonlinear CT Reconstruction.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12925. doi: 10.1117/12.3007693. Epub 2024 Apr 1.
2
CT reconstruction using diffusion posterior sampling conditioned on a nonlinear measurement model.
J Med Imaging (Bellingham). 2024 Jul;11(4):043504. doi: 10.1117/1.JMI.11.4.043504. Epub 2024 Aug 30.
3
X-ray source motion blur modeling and deblurring with generative diffusion for digital breast tomosynthesis.
Phys Med Biol. 2024 May 14;69(11):115003. doi: 10.1088/1361-6560/ad40f8.
4
Performance and usefulness evaluation of a software-based scatter correction technique for mammographic images.
Heliyon. 2024 Jan 17;10(2):e24862. doi: 10.1016/j.heliyon.2024.e24862. eCollection 2024 Jan 30.
5
Three-material decomposition using a dual-layer flat panel detector in the presence of soft tissue motion.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12463. doi: 10.1117/12.2654443. Epub 2023 Apr 7.
6
Tunable neural networks for CT image formation.
J Med Imaging (Bellingham). 2023 May;10(3):033501. doi: 10.1117/1.JMI.10.3.033501. Epub 2023 May 4.
8
Control of Variance and Bias in CT Image Processing with Variational Training of Deep Neural Networks.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12031. doi: 10.1117/12.2612417. Epub 2022 Apr 4.
10
Advances in micro-CT imaging of small animals.
Phys Med. 2021 Aug;88:175-192. doi: 10.1016/j.ejmp.2021.07.005. Epub 2021 Jul 17.

本文引用的文献

1
Statistical reconstruction for cone-beam CT with a post-artifact-correction noise model: application to high-quality head imaging.
Phys Med Biol. 2015 Aug 21;60(16):6153-75. doi: 10.1088/0031-9155/60/16/6153. Epub 2015 Jul 30.
2
Iterative CBCT reconstruction using Hessian penalty.
Phys Med Biol. 2015 Mar 7;60(5):1965-87. doi: 10.1088/0031-9155/60/5/1965.
3
High-fidelity artifact correction for cone-beam CT imaging of the brain.
Phys Med Biol. 2015 Feb 21;60(4):1415-39. doi: 10.1088/0031-9155/60/4/1415. Epub 2015 Jan 22.
4
Iterative CT Reconstruction using Models of Source and Detector Blur and Correlated Noise.
Conf Proc Int Conf Image Form Xray Comput Tomogr. 2014;2014:363-367.
5
Generalized Least-Squares CT Reconstruction with Detector Blur and Correlated Noise Models.
Proc SPIE Int Soc Opt Eng. 2014 Mar 19;9033:903335. doi: 10.1117/12.2043067.
6
Combining ordered subsets and momentum for accelerated X-ray CT image reconstruction.
IEEE Trans Med Imaging. 2015 Jan;34(1):167-78. doi: 10.1109/TMI.2014.2350962. Epub 2014 Aug 22.
7
Peripheral Quantitative CT (pQCT) Using a Dedicated Extremity Cone-Beam CT Scanner.
Proc SPIE Int Soc Opt Eng. 2013 Mar 29;8672:867203. doi: 10.1117/12.2006939.
8
Proximal ADMM for multi-channel image reconstruction in spectral X-ray CT.
IEEE Trans Med Imaging. 2014 Aug;33(8):1657-68. doi: 10.1109/TMI.2014.2321098. Epub 2014 Apr 30.
10
Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction.
Phys Med Biol. 2014 Feb 21;59(4):1005-26. doi: 10.1088/0031-9155/59/4/1005. Epub 2014 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验