Suppr超能文献

有序外延 BiFeO3/CoFe2O4/SrRuO3 异质结构纳米点阵列中的磁电耦合

Magnetoelectric Coupling in Well-Ordered Epitaxial BiFeO3/CoFe2O4/SrRuO3 Heterostructured Nanodot Array.

机构信息

Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University , Guangzhou 510006, China.

Asylum Research , Santa Barbara, California 93117, United States.

出版信息

ACS Nano. 2016 Jan 26;10(1):1025-32. doi: 10.1021/acsnano.5b06339. Epub 2015 Dec 14.

Abstract

Multiferroic magnetoelectric (ME) composites exhibit sizable ME coupling at room temperature, promising applications in a wide range of novel devices. For high density integrated devices, it is indispensable to achieve a well-ordered nanostructured array with reasonable ME coupling. For this purpose, we explored the well-ordered array of isolated epitaxial BiFeO3/CoFe2O4/SrRuO3 heterostructured nanodots fabricated by nanoporous anodic alumina (AAO) template method. The arrayed heterostructured nanodots demonstrate well-established epitaxial structures and coexistence of piezoelectric and ferromagnetic properties, as revealed by transmission electron microscopy (TEM) and peizoeresponse/magnetic force microscopy (PFM/MFM). It was found that the heterostructured nanodots yield apparent ME coupling, likely due to the effective transfer of interface couplings along with the substantial release of substrate clamping. A noticeable change in piezoelectric response of the nanodots can be triggered by magnetic field, indicating a substantial enhancement of ME coupling. Moreover, an electric field induced magnetization switching in these nanodots can be observed, showing a large reverse ME effect. These results offer good opportunities of the nanodots for applications in high-density ME devices, e.g., high density recording (>100 Gbit/in.(2)) or logic devices.

摘要

多铁性磁电(ME)复合材料在室温下表现出可观的 ME 耦合,有望在各种新型器件中得到广泛应用。对于高密度集成器件,实现具有合理 ME 耦合的有序纳米结构阵列是必不可少的。为此,我们探索了通过纳米多孔氧化铝(AAO)模板法制备的孤立外延 BiFeO3/CoFe2O4/SrRuO3 异质结构纳米点的有序阵列。通过透射电子显微镜(TEM)和压电力/磁力显微镜(PFM/MFM)发现,阵列化的异质结构纳米点具有良好的外延结构和压电与铁磁性能共存。发现异质结构纳米点表现出明显的 ME 耦合,这可能是由于界面耦合的有效传递以及基底夹持的显著释放。磁场可以触发纳米点的压电响应明显变化,表明 ME 耦合得到了很大增强。此外,可以观察到这些纳米点中的电场诱导磁化反转,表现出很大的反向 ME 效应。这些结果为纳米点在高密度 ME 器件中的应用提供了很好的机会,例如高密度记录(>100 Gbit/in.2)或逻辑器件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验