Hein Andrew M, Rosenthal Sara Brin, Hagstrom George I, Berdahl Andrew, Torney Colin J, Couzin Iain D
Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States.
Department of Physics, Princeton University, Princeton, United States.
Elife. 2015 Dec 10;4:e10955. doi: 10.7554/eLife.10955.
Many animal groups exhibit rapid, coordinated collective motion. Yet, the evolutionary forces that cause such collective responses to evolve are poorly understood. Here, we develop analytical methods and evolutionary simulations based on experimental data from schooling fish. We use these methods to investigate how populations evolve within unpredictable, time-varying resource environments. We show that populations evolve toward a distinctive regime in behavioral phenotype space, where small responses of individuals to local environmental cues cause spontaneous changes in the collective state of groups. These changes resemble phase transitions in physical systems. Through these transitions, individuals evolve the emergent capacity to sense and respond to resource gradients (i.e. individuals perceive gradients via social interactions, rather than sensing gradients directly), and to allocate themselves among distinct, distant resource patches. Our results yield new insight into how natural selection, acting on selfish individuals, results in the highly effective collective responses evident in nature.
许多动物群体都表现出快速、协调的集体运动。然而,导致这种集体反应进化的进化力量却鲜为人知。在此,我们基于对成群游动鱼类的实验数据,开发了分析方法和进化模拟。我们使用这些方法来研究种群在不可预测的、随时间变化的资源环境中是如何进化的。我们表明,种群在行为表型空间中朝着一种独特的状态进化,在这种状态下,个体对局部环境线索的微小反应会导致群体集体状态的自发变化。这些变化类似于物理系统中的相变。通过这些转变,个体进化出感知资源梯度并对其做出反应的涌现能力(即个体通过社会互动感知梯度,而非直接感知梯度),并在不同的、遥远的资源斑块之间进行自我分配。我们的研究结果为自然选择如何作用于自私的个体从而产生自然界中明显的高效集体反应提供了新的见解。