Suppr超能文献

揭示移动动物群体中隐藏的互动网络有助于预测复杂的行为传播。

Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion.

作者信息

Rosenthal Sara Brin, Twomey Colin R, Hartnett Andrew T, Wu Hai Shan, Couzin Iain D

机构信息

Departments of Physics and.

Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544;

出版信息

Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4690-5. doi: 10.1073/pnas.1420068112. Epub 2015 Mar 30.

Abstract

Coordination among social animals requires rapid and efficient transfer of information among individuals, which may depend crucially on the underlying structure of the communication network. Establishing the decision-making circuits and networks that give rise to individual behavior has been a central goal of neuroscience. However, the analogous problem of determining the structure of the communication network among organisms that gives rise to coordinated collective behavior, such as is exhibited by schooling fish and flocking birds, has remained almost entirely neglected. Here, we study collective evasion maneuvers, manifested through rapid waves, or cascades, of behavioral change (a ubiquitous behavior among taxa) in schooling fish (Notemigonus crysoleucas). We automatically track the positions and body postures, calculate visual fields of all individuals in schools of ∼150 fish, and determine the functional mapping between socially generated sensory input and motor response during collective evasion. We find that individuals use simple, robust measures to assess behavioral changes in neighbors, and that the resulting networks by which behavior propagates throughout groups are complex, being weighted, directed, and heterogeneous. By studying these interaction networks, we reveal the (complex, fractional) nature of social contagion and establish that individuals with relatively few, but strongly connected, neighbors are both most socially influential and most susceptible to social influence. Furthermore, we demonstrate that we can predict complex cascades of behavioral change at their moment of initiation, before they actually occur. Consequently, despite the intrinsic stochasticity of individual behavior, establishing the hidden communication networks in large self-organized groups facilitates a quantitative understanding of behavioral contagion.

摘要

群居动物之间的协调需要个体之间快速而高效地传递信息,这可能在很大程度上依赖于通信网络的底层结构。建立引发个体行为的决策回路和网络一直是神经科学的核心目标。然而,确定生物之间导致协调集体行为(如成群的鱼和成群的鸟所表现出的行为)的通信网络结构这一类似问题几乎完全被忽视了。在这里,我们研究在成群的溪红点鲑(Notemigonus crysoleucas)中通过行为变化的快速波动或级联表现出的集体逃避策略(这是一个在分类群中普遍存在的行为)。我们自动跟踪位置和身体姿势,计算约150条鱼群中所有个体的视野,并确定集体逃避期间社会产生的感觉输入和运动反应之间的功能映射。我们发现个体使用简单、可靠的方法来评估邻居的行为变化,并且行为在群体中传播所形成的网络是复杂的,具有加权、有向和异质性。通过研究这些相互作用网络,我们揭示了社会传播的(复杂、部分)本质,并确定邻居相对较少但连接紧密的个体在社会上最具影响力且最容易受到社会影响。此外,我们证明我们能够在复杂的行为变化级联实际发生之前的起始时刻对其进行预测。因此,尽管个体行为具有内在的随机性,但在大型自组织群体中建立隐藏的通信网络有助于对行为传播进行定量理解。

相似文献

2
Individual and collective encoding of risk in animal groups.个体和集体对动物群体风险的编码。
Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20556-20561. doi: 10.1073/pnas.1905585116. Epub 2019 Sep 23.
4
Inferring the structure and dynamics of interactions in schooling fish.推断成群游动鱼类的相互作用的结构和动态。
Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18720-5. doi: 10.1073/pnas.1107583108. Epub 2011 Jul 27.
8
Collective cognition in animal groups.动物群体中的集体认知。
Trends Cogn Sci. 2009 Jan;13(1):36-43. doi: 10.1016/j.tics.2008.10.002. Epub 2008 Dec 6.
10
An index for quantifying flocking behavior.一种用于量化聚集行为的指标。
Percept Mot Skills. 2007 Dec;105(3 Pt 1):977-87. doi: 10.2466/pms.105.3.977-987.

引用本文的文献

9
Information consumption and firm size.信息消费与企业规模。
R Soc Open Sci. 2024 Nov 6;11(11):240027. doi: 10.1098/rsos.240027. eCollection 2024 Nov.

本文引用的文献

7
The dynamics of social innovation.社会创新的动态。
Proc Natl Acad Sci U S A. 2011 Dec 27;108 Suppl 4(Suppl 4):21285-91. doi: 10.1073/pnas.1100973108. Epub 2011 Dec 22.
8
Does the brain calculate value?大脑会计算价值吗?
Trends Cogn Sci. 2011 Nov;15(11):546-54. doi: 10.1016/j.tics.2011.09.008. Epub 2011 Oct 7.
10
Social waves in giant honeybees repel hornets.巨型蜜蜂群体中的社交浪潮能驱赶黄蜂。
PLoS One. 2008 Sep 10;3(9):e3141. doi: 10.1371/journal.pone.0003141.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验