Suppr超能文献

DeepD&Cchl:一种用于自动进行三维单细胞叶绿体检测、计数和细胞类型聚类的人工智能工具。

DeepD&Cchl: an AI tool for automated 3D single-cell chloroplast detection, counting, and cell type clustering.

作者信息

Su Qun, Liu Le, Hu Zhengsheng, Wang Tao, Wang Huaying, Guo Qiuqi, Liao Xinyi, Sha Yan, Li Feng, Dong Zhao, Yang Shaokai, Liu Ningjing, Zhao Qiong

机构信息

School of Mathematics and Physics, Hebei University of Engineering, Handan, Hebei, China.

School of Life Sciences, East China Normal University, Shanghai, China.

出版信息

Front Plant Sci. 2025 May 23;16:1513953. doi: 10.3389/fpls.2025.1513953. eCollection 2025.

Abstract

Chloroplast density in cells varies among different types of cells and plants. In current single-cell spatiotemporal analysis, the automatic detection and quantification of chloroplasts at the single-cell level is crucial. We developed DeepD&Cchl (Deep-learning-based Detecting-and-Counting-chloroplasts), an AI tool for single-cell chloroplast detection and cell-type clustering. It utilizes You-Only-Look-Once (YOLO), a real-time detection algorithm, for accurate and efficient performance. DeepD&Cchl has been proved to identify chloroplasts in plant cells across various imaging types, including light microscopy, electron microscopy, and fluorescence microscopy. Integrated with an Intersection Over Union (IOU) module, DeepD&Cchl precisely counts chloroplasts in single- or multi-layered images, while eliminating double-counting errors. Furthermore, when combined with Cellpose, a single-cell segmentation tool, DeepD&Cchl enhances its effectiveness at the single-cell level. By counting chloroplasts within individual cells, it supports cell-type-specific clustering based on chloroplast number versus cell size, offering valuable morphological insights for single-cell studies. In summary, DeepD&Cchl is a significant advancement in plant cell analysis. It offers accuracy and efficiency in chloroplast identification, counting and cell-type classification, providing a useful tool for plant research.

摘要

细胞中的叶绿体密度在不同类型的细胞和植物之间存在差异。在当前的单细胞时空分析中,在单细胞水平上对叶绿体进行自动检测和定量至关重要。我们开发了DeepD&Cchl(基于深度学习的叶绿体检测与计数工具),这是一种用于单细胞叶绿体检测和细胞类型聚类的人工智能工具。它利用实时检测算法You-Only-Look-Once(YOLO)来实现准确高效的性能。DeepD&Cchl已被证明能够在包括光学显微镜、电子显微镜和荧光显微镜在内的各种成像类型中识别植物细胞中的叶绿体。与交并比(IOU)模块集成后,DeepD&Cchl能够精确地对单层或多层图像中的叶绿体进行计数,同时消除重复计数错误。此外,当与单细胞分割工具Cellpose结合使用时,DeepD&Cchl在单细胞水平上的有效性得到增强。通过对单个细胞内的叶绿体进行计数,它支持基于叶绿体数量与细胞大小的细胞类型特异性聚类,为单细胞研究提供有价值的形态学见解。总之,DeepD&Cchl是植物细胞分析方面的一项重大进展。它在叶绿体识别、计数和细胞类型分类方面提供了准确性和效率,为植物研究提供了一个有用的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5b5/12141212/e73f909c3c07/fpls-16-1513953-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验