Plöschner Martin, Kollárová Věra, Dostál Zbyněk, Nylk Jonathan, Barton-Owen Thomas, Ferrier David E K, Chmelík Radim, Dholakia Kishan, Čižmár Tomáš
Ewing Building, School of Engineering, Physics &Mathematics, University of Dundee, Dundee, DD1 4HN, Scotland.
SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, Scotland.
Sci Rep. 2015 Dec 14;5:18050. doi: 10.1038/srep18050.
Light-sheet fluorescence microscopy has emerged as a powerful platform for 3-D volumetric imaging in the life sciences. Here, we introduce an important step towards its use deep inside biological tissue. Our new technique, based on digital holography, enables delivery of the light-sheet through a multimode optical fibre--an optical element with extremely small footprint, yet permitting complex control of light transport processes within. We show that this approach supports some of the most advanced methods in light-sheet microscopy: by taking advantage of the cylindrical symmetry of the fibre, we facilitate the wavefront engineering methods for generation of both Bessel and structured Bessel beam plane illumination. Finally, we assess the quality of imaging on a sample of fluorescent beads fixed in agarose gel and we conclude with a proof-of-principle imaging of a biological sample, namely the regenerating operculum prongs of Spirobranchus lamarcki.
光片荧光显微镜已成为生命科学中用于三维体积成像的强大平台。在此,我们朝着将其用于生物组织深部迈出了重要一步。我们基于数字全息术的新技术能够通过多模光纤传输光片,多模光纤是一种占地面积极小但能对内部光传输过程进行复杂控制的光学元件。我们表明,这种方法支持光片显微镜中的一些最先进方法:通过利用光纤的圆柱对称性,我们便于采用波前工程方法来生成贝塞尔光束和结构化贝塞尔光束平面照明。最后,我们评估了在固定于琼脂糖凝胶中的荧光珠样本上的成像质量,并以对生物样本(即拉氏旋鳃虫再生鳃盖叉)的原理验证成像作为总结。