D'Agostino Paul M, Woodhouse Jason N, Makower A Katharina, Yeung Anna C Y, Ongley Sarah E, Micallef Melinda L, Moffitt Michelle C, Neilan Brett A
School of Biotechnology and Biomolecular Sciences, University of New South Wales, Biological Sciences Building D26, Sydney, NSW, 2052, Australia.
Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany.
Environ Microbiol Rep. 2016 Feb;8(1):3-13. doi: 10.1111/1758-2229.12366. Epub 2016 Jan 22.
A common misconception persists that the genomes of toxic and non-toxic cyanobacterial strains are largely conserved with the exception of the presence or absence of the genes responsible for toxin production. Implementation of -omics era technologies has challenged this paradigm, with comparative analyses providing increased insight into the differences between strains of the same species. The implementation of genomic, transcriptomic and proteomic approaches has revealed distinct profiles between toxin-producing and non-toxic strains. Further, metagenomics and metaproteomics highlight the genomic potential and functional state of toxic bloom events over time. In this review, we highlight how these technologies have shaped our understanding of the complex relationship between these molecules, their producers and the environment at large within which they persist.
一种常见的误解仍然存在,即有毒和无毒蓝藻菌株的基因组在很大程度上是保守的,除了负责毒素产生的基因的存在与否。-omics时代技术的应用对这一范式提出了挑战,比较分析使人们对同一物种不同菌株之间的差异有了更多了解。基因组学、转录组学和蛋白质组学方法的应用揭示了产毒菌株和无毒菌株之间的不同特征。此外,宏基因组学和宏蛋白质组学突出了有毒水华事件随时间变化的基因组潜力和功能状态。在这篇综述中,我们强调了这些技术如何塑造了我们对这些分子、它们的生产者以及它们所存在的整个环境之间复杂关系的理解。