Acid alpha-glucosidases were purified to homogeneity from rat liver, rat skeletal muscle and human placenta. The properties of these enzymes were investigated. 2. Their pH optima for activity toward various substrates were in the range 4-5. 3. Time course and pH dependence experiments revealed that all glycogen substrates were not hydrolysed at the same rate; the rate of hydrolysis was inversely related to the molecular size of the substrate. The most rapidly hydrolysed glycogen substrate was the smallest (commercial oyster) while the least rapidly hydrolysed was the largest (native rat or rabbit liver). Intermediate sized glycogens were hydrolysed at intermediate rates. 4. Glycogen hydrolysis was stimulated by added sodium ions; this stimulation was pH dependent. 5. It is suggested that lysosomal glycogen metabolism may be controlled by pH, salt concentration and the size of the glycogen substrate. 6. Since the high molecular weight glycogen associated with lysosomes is formed by disulphide bridges between lower molecular weight material it is proposed that an important step of lysosomal glycogen degradation is disulphide bond reduction.