Suppr超能文献

大规模基因组学中的探索性失效时间分析

Exploratory Failure Time Analysis in Large Scale Genomics.

作者信息

Cheng Cheng

机构信息

Department of Biostatistics, St. Jude Children's Research Hospital 262 Danny Thomas Place, Memphis, TN 38105-2794, USA.

出版信息

Comput Stat Data Anal. 2016 Mar 1;95:192-206. doi: 10.1016/j.csda.2015.10.004.

Abstract

In large scale genomic analyses dealing with detecting genotype-phenotype associations, such as genome wide association studies (GWAS), it is desirable to have numerically and statistically robust procedures to test the stochastic independence null hypothesis against certain alternatives. Motivated by a special case in a GWAS, a novel test procedure called correlation profile test (CPT) is developed for testing genomic associations with failure-time phenotypes subject to right censoring and competing risks. Performance and operating characteristics of CPT are investigated and compared to existing approaches, by a simulation study and on a real dataset. Compared to popular choices of semiparametric and nonparametric methods, CPT has three advantages: it is numerically more robust because it solely relies on sample moments; it is more robust against the violation of the proportional hazards condition; and it is more flexible in handling various failure and censoring scenarios. CPT is a general approach to testing the null hypothesis of stochastic independence between a failure event point process and any random variable; thus it is widely applicable beyond genomic studies.

摘要

在大规模基因组分析中,例如全基因组关联研究(GWAS),涉及检测基因型与表型的关联,需要有数值上和统计上稳健的程序来针对某些备择假设检验随机独立性原假设。受GWAS中一个特殊情况的启发,开发了一种名为相关轮廓检验(CPT)的新型检验程序,用于检验受右删失和竞争风险影响的失效时间表型的基因组关联。通过模拟研究和真实数据集,研究了CPT的性能和操作特性,并与现有方法进行了比较。与半参数和非参数方法的常用选择相比,CPT有三个优点:在数值上更稳健,因为它仅依赖于样本矩;对比例风险条件的违反更具稳健性;在处理各种失效和删失情况时更灵活。CPT是检验失效事件点过程与任何随机变量之间随机独立性原假设的通用方法;因此它在基因组研究之外具有广泛的适用性。

相似文献

1
Exploratory Failure Time Analysis in Large Scale Genomics.大规模基因组学中的探索性失效时间分析
Comput Stat Data Anal. 2016 Mar 1;95:192-206. doi: 10.1016/j.csda.2015.10.004.
5
Score tests for independence in semiparametric competing risks models.半参数竞争风险模型中独立性的计分检验
Lifetime Data Anal. 2009 Dec;15(4):413-40. doi: 10.1007/s10985-009-9123-7. Epub 2009 Aug 28.
6
Permutation Tests for General Dependent Truncation.一般相依截断的排列检验
Comput Stat Data Anal. 2018 Dec;128:308-324. doi: 10.1016/j.csda.2018.07.012. Epub 2018 Jul 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验