Suppr超能文献

海洋细菌在氧气浓度降低时的呼吸动力学

Respiratory Kinetics of Marine Bacteria Exposed to Decreasing Oxygen Concentrations.

作者信息

Gong Xianzhe, Garcia-Robledo Emilio, Schramm Andreas, Revsbech Niels Peter

机构信息

Section of Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.

Section of Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark

出版信息

Appl Environ Microbiol. 2015 Dec 18;82(5):1412-1422. doi: 10.1128/AEM.03669-15.

Abstract

During aerobic respiration, microorganisms consume oxygen (O2) through the use of different types of terminal oxidases which have a wide range of affinities for O2. The Km values for O2 of these enzymes have been determined to be in the range of 3 to 200 nmol liter(-1). In this study, we examined the time course of development of aerobic respiratory kinetics of four marine bacterial species (Dinoroseobacter shibae, Roseobacter denitrificans, Idiomarina loihiensis, and Marinobacter daepoensis) during exposure to decreasing O2 concentrations. The genomes of all four species have genes for both high-affinity and low-affinity terminal oxidases. The respiration rate of the bacteria was measured by the use of extremely sensitive optical trace O2 sensors (range, 1 to 1,000 nmol liter(-1)). Three of the four isolates exhibited apparent Km values of 30 to 60 nmol liter(-1) when exposed to submicromolar O2 concentrations, but a decrease to values below 10 nmol liter(-1) was observed when the respiration rate per cell was lowered and the cell size was decreased due to starvation. The fourth isolate did not reach a low respiration rate per cell during starvation and exhibited apparent Km values of about 20 nmol liter(-1) throughout the experiment. The results clearly demonstrate not only that enzyme kinetics may limit O2 uptake but also that even individual cells may be diffusion limited and that this diffusion limitation is the most pronounced at high respiration rates. A decrease in cell size by starvation, due to limiting organic carbon, and thereby more efficient diffusion uptake may also contribute to lower apparent Km values.

摘要

在有氧呼吸过程中,微生物通过使用对氧气(O₂)具有广泛亲和力的不同类型的末端氧化酶来消耗氧气(O₂)。已确定这些酶对O₂的米氏常数(Km)值在3至200纳摩尔/升范围内。在本研究中,我们研究了四种海洋细菌物种(希氏海杆菌(Dinoroseobacter shibae)、反硝化玫瑰杆菌(Roseobacter denitrificans)、洛伊希岛嗜压菌(Idiomarina loihiensis)和大浦海杆菌(Marinobacter daepoensis))在暴露于逐渐降低的O₂浓度期间有氧呼吸动力学的发展时间进程。这四个物种的基因组都具有高亲和力和低亲和力末端氧化酶的基因。通过使用极其灵敏的光学微量O₂传感器(范围为1至1000纳摩尔/升)来测量细菌的呼吸速率。当暴露于亚微摩尔O₂浓度时,这四种分离株中的三种表现出30至60纳摩尔/升的表观Km值,但当由于饥饿导致每个细胞的呼吸速率降低且细胞大小时,观察到表观Km值降至10纳摩尔/升以下。第四种分离株在饥饿期间未达到每个细胞低的呼吸速率,并且在整个实验过程中表现出约20纳摩尔/升的表观Km值。结果清楚地表明,不仅酶动力学可能限制O₂摄取,而且即使是单个细胞也可能受到扩散限制,并且这种扩散限制在高呼吸速率时最为明显。由于有机碳限制,饥饿导致细胞大小减小,从而更有效地进行扩散摄取,这也可能导致表观Km值降低。

相似文献

1
Respiratory Kinetics of Marine Bacteria Exposed to Decreasing Oxygen Concentrations.
Appl Environ Microbiol. 2015 Dec 18;82(5):1412-1422. doi: 10.1128/AEM.03669-15.
3
Microaerobic Lifestyle at Nanomolar O Concentrations Mediated by Low-Affinity Terminal Oxidases in Abundant Soil Bacteria.
mSystems. 2021 Aug 31;6(4):e0025021. doi: 10.1128/mSystems.00250-21. Epub 2021 Jul 6.
5
Effects of kepone on growth and respiration of several estuarine bacteria.
Appl Environ Microbiol. 1982 Jun;43(6):1419-24. doi: 10.1128/aem.43.6.1419-1424.1982.
6
Aerobic microbial communities in the sediments of a marine oxygen minimum zone.
FEMS Microbiol Lett. 2020 Oct 16;367(19). doi: 10.1093/femsle/fnaa157.
9
Biochemical Barriers on the Path to Ocean Anoxia?
mBio. 2021 Aug 31;12(4):e0133221. doi: 10.1128/mBio.01332-21. Epub 2021 Jul 13.

引用本文的文献

1
Microbial carbon oxidation in seawater below the hypoxic threshold.
Sci Rep. 2025 Jan 22;15(1):2838. doi: 10.1038/s41598-024-82438-z.
3
Nitrite Oxidation in Wastewater Treatment: Microbial Adaptation and Suppression Challenges.
Environ Sci Technol. 2023 Aug 29;57(34):12557-12570. doi: 10.1021/acs.est.3c00636. Epub 2023 Aug 17.
4
Coastal Transient Niches Shape the Microdiversity Pattern of a Bacterioplankton Population with Reduced Genomes.
mBio. 2022 Aug 30;13(4):e0057122. doi: 10.1128/mbio.00571-22. Epub 2022 Jul 26.
5
A novel chemical biology and computational approach to expedite the discovery of new-generation polymyxins against life-threatening .
Chem Sci. 2021 Aug 19;12(36):12211-12220. doi: 10.1039/d1sc03460j. eCollection 2021 Sep 22.
6
Microaerobic Lifestyle at Nanomolar O Concentrations Mediated by Low-Affinity Terminal Oxidases in Abundant Soil Bacteria.
mSystems. 2021 Aug 31;6(4):e0025021. doi: 10.1128/mSystems.00250-21. Epub 2021 Jul 6.
7
8
Cryptic oxygen cycling in anoxic marine zones.
Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):8319-8324. doi: 10.1073/pnas.1619844114. Epub 2017 Jul 17.
9
In Situ Hydrogen Dynamics in a Hot Spring Microbial Mat during a Diel Cycle.
Appl Environ Microbiol. 2016 Jun 30;82(14):4209-4217. doi: 10.1128/AEM.00710-16. Print 2016 Jul 15.

本文引用的文献

1
Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.
PLoS One. 2015 Jul 20;10(7):e0133526. doi: 10.1371/journal.pone.0133526. eCollection 2015.
2
LUMOS--A Sensitive and Reliable Optode System for Measuring Dissolved Oxygen in the Nanomolar Range.
PLoS One. 2015 Jun 1;10(6):e0128125. doi: 10.1371/journal.pone.0128125. eCollection 2015.
4
Gene regulatory and metabolic adaptation processes of Dinoroseobacter shibae DFL12T during oxygen depletion.
J Biol Chem. 2014 May 9;289(19):13219-31. doi: 10.1074/jbc.M113.545004. Epub 2014 Mar 19.
6
Influence of light and anoxia on chemiosmotic energy conservation in Dinoroseobacter shibae.
Environ Microbiol Rep. 2011 Feb;3(1):136-141. doi: 10.1111/j.1758-2229.2010.00199.x.
9
Transmembrane proton translocation by cytochrome c oxidase.
Biochim Biophys Acta. 2006 Aug;1757(8):1052-63. doi: 10.1016/j.bbabio.2006.05.020. Epub 2006 May 19.
10
Starvation-induced effects on bacterial surface characteristics.
Appl Environ Microbiol. 1984 Sep;48(3):497-503. doi: 10.1128/aem.48.3.497-503.1984.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验