Suppr超能文献

一幅超高密度图谱作为用于识别玉米数量性状遗传基础的群体资源。

An ultra-high-density map as a community resource for discerning the genetic basis of quantitative traits in maize.

作者信息

Liu Hongjun, Niu Yongchao, Gonzalez-Portilla Pedro J, Zhou Huangkai, Wang Liya, Zuo Tao, Qin Cheng, Tai Shuaishuai, Jansen Constantin, Shen Yaou, Lin Haijian, Lee Michael, Ware Doreen, Zhang Zhiming, Lübberstedt Thomas, Pan Guangtang

机构信息

Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, 611130, Chengdu, China.

BGI-Shenzhen, Shenzhen, 518083, China.

出版信息

BMC Genomics. 2015 Dec 21;16:1078. doi: 10.1186/s12864-015-2242-5.

Abstract

BACKGROUND

To safeguard the food supply for the growing human population, it is important to understand and exploit the genetic basis of quantitative traits. Next-generation sequencing technology performs advantageously and effectively in genetic mapping and genome analysis of diverse genetic resources. Hence, we combined re-sequencing technology and a bin map strategy to construct an ultra-high-density bin map with thousands of bin markers to precisely map a quantitative trait locus.

RESULTS

In this study, we generated a linkage map containing 1,151,856 high quality SNPs between Mo17 and B73, which were verified in the maize intermated B73 × Mo17 (IBM) Syn10 population. This resource is an excellent complement to existing maize genetic maps available in an online database  (iPlant, http://data.maizecode.org/maize/qtl/syn10/ ). Moreover, in this population combined with the IBM Syn4 RIL population, we detected 135 QTLs for flowering time and plant height traits across the two populations. Eighteen known functional genes and twenty-five candidate genes for flowering time and plant height trait were fine-mapped into a 2.21-4.96 Mb interval. Map expansion and segregation distortion were also analyzed, and evidence for inadvertent selection of early flowering time in the process of mapping population development was observed. Furthermore, an updated integrated map with 1,151,856 high-quality SNPs, 2,916 traditional markers and 6,618 bin markers was constructed. The data were deposited into the iPlant Discovery Environment (DE), which provides a fundamental resource of genetic data for the maize genetic research community.

CONCLUSIONS

Our findings provide basic essential genetic data for the maize genetic research community. An updated IBM Syn10 population and a reliable, verified high-quality SNP set between Mo17 and B73 will aid in future molecular breeding efforts.

摘要

背景

为保障不断增长的人口的食物供应,了解和利用数量性状的遗传基础十分重要。新一代测序技术在多种遗传资源的基因定位和基因组分析中表现出色且高效。因此,我们结合重测序技术和区间图谱策略构建了一个具有数千个区间标记的超高密度区间图谱,以精确定位数量性状基因座。

结果

在本研究中,我们构建了一个连锁图谱,其中包含Mo17和B73之间的1,151,856个高质量单核苷酸多态性(SNP),这些SNP在玉米互交B73×Mo17(IBM)Syn10群体中得到了验证。该资源是在线数据库(iPlant,http://data.maizecode.org/maize/qtl/syn10/)中现有玉米遗传图谱的出色补充。此外,在该群体与IBM Syn4重组自交系群体相结合的情况下,我们在两个群体中检测到了135个控制开花时间和株高性状的数量性状基因座(QTL)。将18个已知功能基因和25个控制开花时间和株高性状的候选基因精细定位到了2.21 - 4.96兆碱基(Mb)的区间内。还分析了图谱扩展和分离畸变情况,并观察到在作图群体发展过程中存在对早花时间的无意选择证据。此外,构建了一个更新的整合图谱,包含1,151,856个高质量SNP、2,916个传统标记和6,618个区间标记。这些数据已存入iPlant发现环境(DE),为玉米遗传研究群体提供了重要的遗传数据资源。

结论

我们的研究结果为玉米遗传研究群体提供了基本的重要遗传数据。更新后的IBM Syn10群体以及MoQTLs17和B73之间可靠、经过验证的高质量SNP集将有助于未来的分子育种工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82c8/4687334/cd080526c399/12864_2015_2242_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验