Suppr超能文献

通过与不同的碳水化合物结合模块融合来靶向多功能纤维素酶催化作用。

Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules.

作者信息

Walker Johnnie A, Takasuka Taichi E, Deng Kai, Bianchetti Christopher M, Udell Hannah S, Prom Ben M, Kim Hyunkee, Adams Paul D, Northen Trent R, Fox Brian G

机构信息

US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA.

Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA.

出版信息

Biotechnol Biofuels. 2015 Dec 21;8:220. doi: 10.1186/s13068-015-0402-0. eCollection 2015.

Abstract

BACKGROUND

Carbohydrate binding modules (CBMs) bind polysaccharides and help target glycoside hydrolases catalytic domains to their appropriate carbohydrate substrates. To better understand how CBMs can improve cellulolytic enzyme reactivity, representatives from each of the 18 families of CBM found in Ruminoclostridium thermocellum were fused to the multifunctional GH5 catalytic domain of CelE (Cthe_0797, CelEcc), which can hydrolyze numerous types of polysaccharides including cellulose, mannan, and xylan. Since CelE is a cellulosomal enzyme, none of these fusions to a CBM previously existed.

RESULTS

CelEcc_CBM fusions were assayed for their ability to hydrolyze cellulose, lichenan, xylan, and mannan. Several CelEcc_CBM fusions showed enhanced hydrolytic activity with different substrates relative to the fusion to CBM3a from the cellulosome scaffoldin, which has high affinity for binding to crystalline cellulose. Additional binding studies and quantitative catalysis studies using nanostructure-initiator mass spectrometry (NIMS) were carried out with the CBM3a, CBM6, CBM30, and CBM44 fusion enzymes. In general, and consistent with observations of others, enhanced enzyme reactivity was correlated with moderate binding affinity of the CBM. Numerical analysis of reaction time courses showed that CelEcc_CBM44, a combination of a multifunctional enzyme domain with a CBM having broad binding specificity, gave the fastest rates for hydrolysis of both the hexose and pentose fractions of ionic-liquid pretreated switchgrass.

CONCLUSION

We have shown that fusions of different CBMs to a single multifunctional GH5 catalytic domain can increase its rate of reaction with different pure polysaccharides and with pretreated biomass. This fusion approach, incorporating domains with broad specificity for binding and catalysis, provides a new avenue to improve reactivity of simple combinations of enzymes within the complexity of plant biomass.

摘要

背景

碳水化合物结合模块(CBMs)可结合多糖,并帮助将糖苷水解酶催化结构域靶向至其合适的碳水化合物底物。为了更好地理解CBMs如何提高纤维素分解酶的反应活性,从热纤梭菌(Ruminoclostridium thermocellum)中发现的18个CBM家族中各选取代表,将其与CelE(Cthe_0797,CelEcc)的多功能GH5催化结构域融合,CelE能够水解多种类型的多糖,包括纤维素、甘露聚糖和木聚糖。由于CelE是一种纤维小体酶,此前不存在这些与CBM的融合体。

结果

对CelEcc_CBM融合体水解纤维素、地衣多糖、木聚糖和甘露聚糖的能力进行了测定。相对于与来自纤维小体支架蛋白的CBM3a的融合体(其对结晶纤维素具有高亲和力),几种CelEcc_CBM融合体对不同底物表现出增强的水解活性。使用纳米结构引发剂质谱(NIMS)对CBM3a、CBM6、CBM30和CBM44融合酶进行了额外的结合研究和定量催化研究。总体而言,与其他人的观察结果一致,酶反应活性的增强与CBM的适度结合亲和力相关。反应时间进程的数值分析表明,CelEcc_CBM44(一种多功能酶结构域与具有广泛结合特异性的CBM的组合)对离子液体预处理柳枝稷的己糖和戊糖部分的水解速率最快。

结论

我们已经表明,将不同的CBM与单个多功能GH5催化结构域融合,可以提高其与不同纯多糖以及预处理生物质的反应速率。这种融合方法,结合了具有广泛结合和催化特异性的结构域,为在植物生物质的复杂性中提高简单酶组合的反应活性提供了一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55a/4687162/bacd0346b62a/13068_2015_402_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验