Suppr超能文献

人骨髓间充质干细胞在使用生物活性扩链剂制备的分段聚氨酯上的行为

Human mesenchymal stem cell behavior on segmented polyurethanes prepared with biologically active chain extenders.

作者信息

Kavanaugh Taylor E, Clark Amy Y, Chan-Chan Lerma H, Ramírez-Saldaña Maricela, Vargas-Coronado Rossana F, Cervantes-Uc José M, Hernández-Sánchez Fernando, García Andrés J, Cauich-Rodríguez Juan V

机构信息

Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.

Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA.

出版信息

J Mater Sci Mater Med. 2016 Feb;27(2):38. doi: 10.1007/s10856-015-5654-5. Epub 2015 Dec 24.

Abstract

The development of elastomeric, bioresorbable and biocompatible segmented polyurethanes (SPUs) for use in tissue-engineering applications has attracted considerable interest because of the existing need of mechanically tunable scaffolds for regeneration of different tissues, but the incorporation of osteoinductive molecules into SPUs has been limited. In this study, SPUs were synthesized from poly (ε-caprolactone)diol, 4,4'-methylene bis(cyclohexyl isocyanate) using biologically active compounds such as ascorbic acid, L-glutamine, β-glycerol phosphate, and dexamethasone as chain extenders. Fourier transform infrared spectroscopy (FTIR) revealed the formation of both urethanes and urea linkages while differential scanning calorimetry, dynamic mechanical analysis, X-ray diffraction and mechanical testing showed that these polyurethanes were semi-crystalline polymers exhibiting high deformations. Cytocompatibility studies showed that only SPUs containing β-glycerol phosphate supported human mesenchymal stem cell adhesion, growth, and osteogenic differentiation, rendering them potentially suitable for bone tissue regeneration, whereas other SPUs failed to support either cell growth or osteogenic differentiation, or both. This study demonstrates that modification of SPUs with osteogenic compounds can lead to new cytocompatible polymers for regenerative medicine applications.

摘要

由于不同组织再生对机械可调支架存在需求,用于组织工程应用的弹性体、生物可吸收且生物相容的嵌段聚氨酯(SPU)的开发引起了广泛关注,但将骨诱导分子掺入SPU的研究却很有限。在本研究中,使用抗坏血酸、L-谷氨酰胺、β-甘油磷酸和地塞米松等生物活性化合物作为扩链剂,由聚(ε-己内酯)二醇、4,4'-亚甲基双(环己基异氰酸酯)合成了SPU。傅里叶变换红外光谱(FTIR)揭示了聚氨酯和脲键的形成,而差示扫描量热法、动态力学分析、X射线衍射和力学测试表明,这些聚氨酯是表现出高变形的半结晶聚合物。细胞相容性研究表明,只有含β-甘油磷酸的SPU支持人间充质干细胞的黏附、生长和成骨分化,使其有可能适用于骨组织再生,而其他SPU则无法支持细胞生长或成骨分化,或两者均无法支持。本研究表明,用成骨化合物修饰SPU可产生用于再生医学应用的新型细胞相容聚合物。

相似文献

1
Human mesenchymal stem cell behavior on segmented polyurethanes prepared with biologically active chain extenders.
J Mater Sci Mater Med. 2016 Feb;27(2):38. doi: 10.1007/s10856-015-5654-5. Epub 2015 Dec 24.
3
HUVEC biocompatibility and platelet activation of segmented polyurethanes prepared with either glutathione or its amino acids as chain extenders.
J Biomater Sci Polym Ed. 2013;24(14):1601-17. doi: 10.1080/09205063.2013.782804. Epub 2013 Apr 2.
7
A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro.
Mater Sci Eng C Mater Biol Appl. 2019 Oct;103:109857. doi: 10.1016/j.msec.2019.109857. Epub 2019 Jun 5.
8
Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineering.
Mater Sci Eng C Mater Biol Appl. 2019 Oct;103:109819. doi: 10.1016/j.msec.2019.109819. Epub 2019 May 30.
10
Degradable segmented polyurethane elastomers for bone tissue engineering: effect of polycaprolactone content.
J Biomater Sci Polym Ed. 2013;24(1):77-93. doi: 10.1163/156856212X624985. Epub 2012 May 11.

本文引用的文献

2
The effect of elastic biodegradable polyurethane electrospun nanofibers on the differentiation of mesenchymal stem cells.
Colloids Surf B Biointerfaces. 2014 Oct 1;122:414-422. doi: 10.1016/j.colsurfb.2014.07.017. Epub 2014 Jul 21.
4
Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle.
Biomaterials. 2014 Jul;35(21):5453-61. doi: 10.1016/j.biomaterials.2014.03.055. Epub 2014 Apr 13.
5
Development of biodegradable polyurethane and bioactive glass nanoparticles scaffolds for bone tissue engineering applications.
J Biomed Mater Res B Appl Biomater. 2012 Jul;100(5):1387-96. doi: 10.1002/jbm.b.32710. Epub 2012 May 7.
8
Physicochemical and biological properties of nano-hydroxyapatite-reinforced aliphatic polyurethanes membranes.
J Biomater Sci Polym Ed. 2010;21(12):1619-36. doi: 10.1163/092050609X12524778957011. Epub 2010 Jun 9.
9
A porous scaffold for bone tissue engineering/45S5 Bioglass derived porous scaffolds for co-culturing osteoblasts and endothelial cells.
J Mater Sci Mater Med. 2010 Mar;21(3):893-905. doi: 10.1007/s10856-009-3936-5. Epub 2009 Nov 29.
10
Optimization of the structure of polyurethanes for bone tissue engineering applications.
Acta Biomater. 2010 Jul;6(7):2501-10. doi: 10.1016/j.actbio.2009.08.037. Epub 2009 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验