Kavanaugh Taylor E, Clark Amy Y, Chan-Chan Lerma H, Ramírez-Saldaña Maricela, Vargas-Coronado Rossana F, Cervantes-Uc José M, Hernández-Sánchez Fernando, García Andrés J, Cauich-Rodríguez Juan V
Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.
Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA.
J Mater Sci Mater Med. 2016 Feb;27(2):38. doi: 10.1007/s10856-015-5654-5. Epub 2015 Dec 24.
The development of elastomeric, bioresorbable and biocompatible segmented polyurethanes (SPUs) for use in tissue-engineering applications has attracted considerable interest because of the existing need of mechanically tunable scaffolds for regeneration of different tissues, but the incorporation of osteoinductive molecules into SPUs has been limited. In this study, SPUs were synthesized from poly (ε-caprolactone)diol, 4,4'-methylene bis(cyclohexyl isocyanate) using biologically active compounds such as ascorbic acid, L-glutamine, β-glycerol phosphate, and dexamethasone as chain extenders. Fourier transform infrared spectroscopy (FTIR) revealed the formation of both urethanes and urea linkages while differential scanning calorimetry, dynamic mechanical analysis, X-ray diffraction and mechanical testing showed that these polyurethanes were semi-crystalline polymers exhibiting high deformations. Cytocompatibility studies showed that only SPUs containing β-glycerol phosphate supported human mesenchymal stem cell adhesion, growth, and osteogenic differentiation, rendering them potentially suitable for bone tissue regeneration, whereas other SPUs failed to support either cell growth or osteogenic differentiation, or both. This study demonstrates that modification of SPUs with osteogenic compounds can lead to new cytocompatible polymers for regenerative medicine applications.
由于不同组织再生对机械可调支架存在需求,用于组织工程应用的弹性体、生物可吸收且生物相容的嵌段聚氨酯(SPU)的开发引起了广泛关注,但将骨诱导分子掺入SPU的研究却很有限。在本研究中,使用抗坏血酸、L-谷氨酰胺、β-甘油磷酸和地塞米松等生物活性化合物作为扩链剂,由聚(ε-己内酯)二醇、4,4'-亚甲基双(环己基异氰酸酯)合成了SPU。傅里叶变换红外光谱(FTIR)揭示了聚氨酯和脲键的形成,而差示扫描量热法、动态力学分析、X射线衍射和力学测试表明,这些聚氨酯是表现出高变形的半结晶聚合物。细胞相容性研究表明,只有含β-甘油磷酸的SPU支持人间充质干细胞的黏附、生长和成骨分化,使其有可能适用于骨组织再生,而其他SPU则无法支持细胞生长或成骨分化,或两者均无法支持。本研究表明,用成骨化合物修饰SPU可产生用于再生医学应用的新型细胞相容聚合物。