Suppr超能文献

基于相对健康食品可及性识别食物荒漠和食物沼泽:一种时空贝叶斯方法。

Identifying food deserts and swamps based on relative healthy food access: a spatio-temporal Bayesian approach.

作者信息

Luan Hui, Law Jane, Quick Matthew

机构信息

Faculty of Environment, School of Planning, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada.

Faculty of Applied Health Sciences, School of Public Health and Health System, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada.

出版信息

Int J Health Geogr. 2015 Dec 30;14:37. doi: 10.1186/s12942-015-0030-8.

Abstract

BACKGROUND

Obesity and other adverse health outcomes are influenced by individual- and neighbourhood-scale risk factors, including the food environment. At the small-area scale, past research has analysed spatial patterns of food environments for one time period, overlooking how food environments change over time. Further, past research has infrequently analysed relative healthy food access (RHFA), a measure that is more representative of food purchasing and consumption behaviours than absolute outlet density.

METHODS

This research applies a Bayesian hierarchical model to analyse the spatio-temporal patterns of RHFA in the Region of Waterloo, Canada, from 2011 to 2014 at the small-area level. RHFA is calculated as the proportion of healthy food outlets (healthy outlets/healthy + unhealthy outlets) within 4-km from each small-area. This model measures spatial autocorrelation of RHFA, temporal trend of RHFA for the study region, and spatio-temporal trends of RHFA for small-areas.

RESULTS

For the study region, a significant decreasing trend in RHFA is observed (-0.024), suggesting that food swamps have become more prevalent during the study period. For small-areas, significant decreasing temporal trends in RHFA were observed for all small-areas. Specific small-areas located in south Waterloo, north Kitchener, and southeast Cambridge exhibited the steepest decreasing spatio-temporal trends and are classified as spatio-temporal food swamps.

CONCLUSIONS

This research demonstrates a Bayesian spatio-temporal modelling approach to analyse RHFA at the small-area scale. Results suggest that food swamps are more prevalent than food deserts in the Region of Waterloo. Analysing spatio-temporal trends of RHFA improves understanding of local food environment, highlighting specific small-areas where policies should be targeted to increase RHFA and reduce risk factors of adverse health outcomes such as obesity.

摘要

背景

肥胖及其他不良健康后果受个体和社区层面的风险因素影响,包括食物环境。在小区域尺度上,以往研究仅分析了某一时期食物环境的空间模式,而忽略了其随时间的变化。此外,以往研究很少分析相对健康食品获取情况(RHFA),该指标比绝对网点密度更能代表食品购买和消费行为。

方法

本研究应用贝叶斯分层模型,在小区域层面分析了2011年至2014年加拿大滑铁卢地区RHFA的时空模式。RHFA计算为每个小区域4公里范围内健康食品网点的比例(健康网点数/健康网点数 + 不健康网点数)。该模型测量了RHFA的空间自相关性、研究区域RHFA的时间趋势以及小区域RHFA的时空趋势。

结果

对于研究区域,观察到RHFA有显著下降趋势(-0.024),这表明在研究期间食物沼泽变得更加普遍。对于小区域,所有小区域的RHFA均呈现出显著的下降时间趋势。位于滑铁卢南部、基奇纳北部和剑桥东南部的特定小区域呈现出最陡峭的时空下降趋势,被归类为时空食物沼泽。

结论

本研究展示了一种在小区域尺度上分析RHFA的贝叶斯时空建模方法。结果表明,在滑铁卢地区,食物沼泽比食物荒漠更为普遍。分析RHFA的时空趋势有助于更好地理解当地食物环境,突出了应针对哪些特定小区域制定政策,以提高RHFA并降低肥胖等不良健康后果的风险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a49c/4696295/a9b06772afa1/12942_2015_30_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验