Suppr超能文献

铁人三项世界锦标赛运动员耐力表型的7基因遗传图谱评估

Evaluation of a 7-Gene Genetic Profile for Athletic Endurance Phenotype in Ironman Championship Triathletes.

作者信息

Grealy Rebecca, Herruer Jasper, Smith Carl L E, Hiller Doug, Haseler Luke J, Griffiths Lyn R

机构信息

School of Medical Science, Griffith University, Gold Coast, Australia.

Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia.

出版信息

PLoS One. 2015 Dec 30;10(12):e0145171. doi: 10.1371/journal.pone.0145171. eCollection 2015.

Abstract

Polygenic profiling has been proposed for elite endurance performance, using an additive model determining the proportion of optimal alleles in endurance athletes. To investigate this model's utility for elite triathletes, we genotyped seven polymorphisms previously associated with an endurance polygenic profile (ACE Ins/Del, ACTN3 Arg577Ter, AMPD1 Gln12Ter, CKMM 1170bp/985+185bp, HFE His63Asp, GDF8 Lys153Arg and PPARGC1A Gly482Ser) in a cohort of 196 elite athletes who participated in the 2008 Kona Ironman championship triathlon. Mean performance time (PT) was not significantly different in individual marker analysis. Age, sex, and continent of origin had a significant influence on PT and were adjusted for. Only the AMPD1 endurance-optimal Gln allele was found to be significantly associated with an improvement in PT (model p = 5.79 x 10-17, AMPD1 genotype p = 0.01). Individual genotypes were combined into a total genotype score (TGS); TGS distribution ranged from 28.6 to 92.9, concordant with prior studies in endurance athletes (mean±SD: 60.75±12.95). TGS distribution was shifted toward higher TGS in the top 10% of athletes, though the mean TGS was not significantly different (p = 0.164) and not significantly associated with PT even when adjusted for age, sex, and origin. Receiver operating characteristic curve analysis determined that TGS alone could not significantly predict athlete finishing time with discriminating sensitivity and specificity for three outcomes (less than median PT, less than mean PT, or in the top 10%), though models with the age, sex, continent of origin, and either TGS or AMPD1 genotype could. These results suggest three things: that more sophisticated genetic models may be necessary to accurately predict athlete finishing time in endurance events; that non-genetic factors such as training are hugely influential and should be included in genetic analyses to prevent confounding; and that large collaborations may be necessary to obtain sufficient sample sizes for powerful and complex analyses of endurance performance.

摘要

多基因分析已被提出用于精英耐力表现,采用一种加法模型来确定耐力运动员中最优等位基因的比例。为了研究该模型对精英铁人三项运动员的实用性,我们对196名参加2008年科纳铁人三项世界锦标赛的精英运动员进行了基因分型,检测了7种先前与耐力多基因特征相关的多态性(ACE基因插入/缺失、ACTN3基因R577X突变、AMPD1基因Q12X突变、CKMM基因1170bp/985 + 185bp、HFE基因H63D突变、GDF8基因K153R突变和PPARGC1A基因G482S突变)。在单个标记分析中,平均表现时间(PT)没有显著差异。年龄、性别和运动员来源的大洲对PT有显著影响,并进行了校正。仅发现AMPD1基因的耐力最优型谷氨酰胺(Gln)等位基因与PT的改善显著相关(模型p = 5.79×10⁻¹⁷,AMPD1基因分型p = 0.01)。将个体基因型合并为一个总基因型评分(TGS);TGS分布范围为28.6至92.9,与先前对耐力运动员的研究一致(均值±标准差:60.75±12.95)。在排名前10%的运动员中,TGS分布向更高的TGS偏移,尽管平均TGS没有显著差异(p = 0.164),并且即使在对年龄、性别和来源进行校正后,也与PT没有显著关联。受试者工作特征曲线分析确定,仅TGS不能以区分敏感性和特异性显著预测运动员的完赛时间(三种结果:低于中位数PT、低于平均PT或排名前10%),但包含年龄、性别、运动员来源的大洲以及TGS或AMPD1基因分型的模型可以。这些结果表明三点:可能需要更复杂的遗传模型来准确预测耐力项目中运动员的完赛时间;训练等非遗传因素有很大影响,应纳入遗传分析以防止混淆;可能需要大规模合作以获得足够的样本量,用于对耐力表现进行有力且复杂的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd80/4696732/030debed8a65/pone.0145171.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验