Kirk Jonathan A, Saccomani Maria P, Shroff Sanjeev G
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Information Engineering, University of Padova, Padua, Italy.
Cardiovasc Eng Technol. 2013 Dec;4(4):500-512. doi: 10.1007/s13239-013-0157-3.
Model parameters, estimated from experimentally measured data, can provide insight into biological processes that are not experimentally measurable. Whether this optimized parameter set is a physiologically relevant complement to the experimentally measured data, however, depends on the optimized parameter set being unique, a model property known as global identifiability. However, identifiability analysis is not common practice in the biological world, due to the lack of easy-to-use tools. Here we present a program, Differential Algebra for Identifiability of Systems (DAISY), that facilitates identifiability analysis. We applied DAISY to several cardiovascular models: systemic arterial circulation (Windkessel, T-Tube) and cardiac muscle contraction (complex stiffness, crossbridge cycling-based). All models were globally identifiable except the T-Tube model. In this instance, DAISY was able to provide insight into making the model identifiable. We applied numerical parameter optimization techniques to estimate unknown parameters in a model DAISY found globally identifiable. While all the parameters could be accurately estimated, a sensitivity analysis was first necessary to identify the required experimental data. Global identifiability is a prerequisite for numerical parameter optimization, and in a variety of cardiovascular models, DAISY provided a reliable, fast, and simple platform to provide this identifiability analysis.
从实验测量数据估计得到的模型参数,能够为无法通过实验测量的生物学过程提供见解。然而,这个优化后的参数集是否是对实验测量数据的生理学相关补充,取决于优化后的参数集是否唯一,这是一种被称为全局可识别性的模型属性。然而,由于缺乏易用的工具,可识别性分析在生物学领域并非常见做法。在此,我们展示了一个名为“系统可识别性微分代数”(DAISY)的程序,它有助于进行可识别性分析。我们将DAISY应用于多个心血管模型:全身动脉循环模型(风箱模型、T型管模型)和心肌收缩模型(复杂刚度模型、基于横桥循环的模型)。除了T型管模型外,所有模型都是全局可识别的。在这种情况下,DAISY能够为使模型具有可识别性提供见解。我们应用数值参数优化技术来估计DAISY发现具有全局可识别性的模型中的未知参数。虽然所有参数都能被准确估计,但首先需要进行敏感性分析以确定所需的实验数据。全局可识别性是数值参数优化的前提条件,并且在各种心血管模型中,DAISY提供了一个可靠、快速且简单的平台来进行这种可识别性分析。