Suppr超能文献

心血管模型的可识别性分析

Identifiability Analysis of Cardiovascular Models.

作者信息

Kirk Jonathan A, Saccomani Maria P, Shroff Sanjeev G

机构信息

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.

Department of Information Engineering, University of Padova, Padua, Italy.

出版信息

Cardiovasc Eng Technol. 2013 Dec;4(4):500-512. doi: 10.1007/s13239-013-0157-3.

Abstract

Model parameters, estimated from experimentally measured data, can provide insight into biological processes that are not experimentally measurable. Whether this optimized parameter set is a physiologically relevant complement to the experimentally measured data, however, depends on the optimized parameter set being unique, a model property known as global identifiability. However, identifiability analysis is not common practice in the biological world, due to the lack of easy-to-use tools. Here we present a program, Differential Algebra for Identifiability of Systems (DAISY), that facilitates identifiability analysis. We applied DAISY to several cardiovascular models: systemic arterial circulation (Windkessel, T-Tube) and cardiac muscle contraction (complex stiffness, crossbridge cycling-based). All models were globally identifiable except the T-Tube model. In this instance, DAISY was able to provide insight into making the model identifiable. We applied numerical parameter optimization techniques to estimate unknown parameters in a model DAISY found globally identifiable. While all the parameters could be accurately estimated, a sensitivity analysis was first necessary to identify the required experimental data. Global identifiability is a prerequisite for numerical parameter optimization, and in a variety of cardiovascular models, DAISY provided a reliable, fast, and simple platform to provide this identifiability analysis.

摘要

从实验测量数据估计得到的模型参数,能够为无法通过实验测量的生物学过程提供见解。然而,这个优化后的参数集是否是对实验测量数据的生理学相关补充,取决于优化后的参数集是否唯一,这是一种被称为全局可识别性的模型属性。然而,由于缺乏易用的工具,可识别性分析在生物学领域并非常见做法。在此,我们展示了一个名为“系统可识别性微分代数”(DAISY)的程序,它有助于进行可识别性分析。我们将DAISY应用于多个心血管模型:全身动脉循环模型(风箱模型、T型管模型)和心肌收缩模型(复杂刚度模型、基于横桥循环的模型)。除了T型管模型外,所有模型都是全局可识别的。在这种情况下,DAISY能够为使模型具有可识别性提供见解。我们应用数值参数优化技术来估计DAISY发现具有全局可识别性的模型中的未知参数。虽然所有参数都能被准确估计,但首先需要进行敏感性分析以确定所需的实验数据。全局可识别性是数值参数优化的前提条件,并且在各种心血管模型中,DAISY提供了一个可靠、快速且简单的平台来进行这种可识别性分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7493/4696755/7273e94dfb36/nihms-495114-f0001.jpg

相似文献

1
Identifiability Analysis of Cardiovascular Models.心血管模型的可识别性分析
Cardiovasc Eng Technol. 2013 Dec;4(4):500-512. doi: 10.1007/s13239-013-0157-3.

引用本文的文献

1
Guidelines for mechanistic modeling and analysis in cardiovascular research.心血管研究中机制建模与分析的指南。
Am J Physiol Heart Circ Physiol. 2024 Aug 1;327(2):H473-H503. doi: 10.1152/ajpheart.00766.2023. Epub 2024 Jun 21.

本文引用的文献

5
Pressure-calcium relationships in perfused mouse hearts.灌注小鼠心脏中的压力-钙关系。
Am J Physiol Heart Circ Physiol. 2006 Jun;290(6):H2614-24. doi: 10.1152/ajpheart.00979.2005. Epub 2006 Jan 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验