Suppr超能文献

在中期染色体运动过程中探测单个动粒处的微管聚合状态。

Probing microtubule polymerisation state at single kinetochores during metaphase chromosome motion.

作者信息

Armond Jonathan W, Vladimirou Elina, Erent Muriel, McAinsh Andrew D, Burroughs Nigel J

机构信息

Warwick Systems Biology Centre and Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK.

Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.

出版信息

J Cell Sci. 2015 May 15;128(10):1991-2001. doi: 10.1242/jcs.168682. Epub 2015 Apr 23.

Abstract

Kinetochores regulate the dynamics of attached microtubule bundles (kinetochore-fibres, K-fibres) to generate the forces necessary for chromosome movements in mitosis. Current models suggest that poleward-moving kinetochores are attached to depolymerising K-fibres and anti-poleward-moving kinetochores to polymerising K-fibres. How the dynamics of individual microtubules within the K-fibre relate to poleward and anti-poleward movements is poorly understood. To investigate this, we developed a live-cell imaging assay combined with computational image analysis that allows eGFP-tagged EB3 (also known as MAPRE3) to be quantified at thousands of individual metaphase kinetochores as they undergo poleward and anti-poleward motion. Surprisingly, we found that K-fibres are incoherent, containing both polymerising and depolymerising microtubules – with a small polymerisation bias for anti-poleward-moving kinetochores. K-fibres also display bursts of EB3 intensity, predominantly on anti-poleward-moving kinetochores, equivalent to more coherent polymerisation, and this was associated with more regular oscillations. The frequency of bursts and the polymerisation bias decreased upon loss of kinesin-13, whereas loss of kinesin-8 elevated polymerisation bias. Thus, kinetochores actively set the balance of microtubule polymerisation dynamics in the K-fibre while remaining largely robust to fluctuations in microtubule polymerisation.

摘要

动粒调节附着的微管束(动粒纤维,K纤维)的动力学,以产生有丝分裂中染色体运动所需的力。目前的模型表明,向极移动的动粒附着在解聚的K纤维上,而向反极移动的动粒附着在聚合的K纤维上。K纤维内单个微管的动力学与向极和向反极运动之间的关系尚不清楚。为了研究这一点,我们开发了一种活细胞成像检测方法,并结合计算图像分析,使得在数千个处于中期的动粒进行向极和向反极运动时,能够对eGFP标记的EB3(也称为MAPRE3)进行定量分析。令人惊讶的是,我们发现K纤维是不连贯的,包含聚合和解聚的微管——向反极移动的动粒有较小的聚合偏向。K纤维还表现出EB3强度的爆发,主要出现在向反极移动的动粒上,这相当于更连贯的聚合,并且这与更规则的振荡相关。驱动蛋白-13缺失后,爆发频率和聚合偏向降低,而驱动蛋白-8缺失则提高了聚合偏向。因此,动粒在很大程度上对微管聚合波动保持稳健的同时,还能主动设定K纤维中微管聚合动力学的平衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4584/4457160/eb5a19b86010/joces-128-168682-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验