Suppr超能文献

使用基于映射的稀疏表示从低剂量PET和多模态MR图像预测标准剂量PET图像。

Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation.

作者信息

Wang Yan, Zhang Pei, An Le, Ma Guangkai, Kang Jiayin, Shi Feng, Wu Xi, Zhou Jiliu, Lalush David S, Lin Weili, Shen Dinggang

机构信息

College of Computer Science, Sichuan University, Chengdu, People's Republic of China. IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA.

出版信息

Phys Med Biol. 2016 Jan 21;61(2):791-812. doi: 10.1088/0031-9155/61/2/791. Epub 2016 Jan 6.

Abstract

Positron emission tomography (PET) has been widely used in clinical diagnosis for diseases and disorders. To obtain high-quality PET images requires a standard-dose radionuclide (tracer) injection into the human body, which inevitably increases risk of radiation exposure. One possible solution to this problem is to predict the standard-dose PET image from its low-dose counterpart and its corresponding multimodal magnetic resonance (MR) images. Inspired by the success of patch-based sparse representation (SR) in super-resolution image reconstruction, we propose a mapping-based SR (m-SR) framework for standard-dose PET image prediction. Compared with the conventional patch-based SR, our method uses a mapping strategy to ensure that the sparse coefficients, estimated from the multimodal MR images and low-dose PET image, can be applied directly to the prediction of standard-dose PET image. As the mapping between multimodal MR images (or low-dose PET image) and standard-dose PET images can be particularly complex, one step of mapping is often insufficient. To this end, an incremental refinement framework is therefore proposed. Specifically, the predicted standard-dose PET image is further mapped to the target standard-dose PET image, and then the SR is performed again to predict a new standard-dose PET image. This procedure can be repeated for prediction refinement of the iterations. Also, a patch selection based dictionary construction method is further used to speed up the prediction process. The proposed method is validated on a human brain dataset. The experimental results show that our method can outperform benchmark methods in both qualitative and quantitative measures.

摘要

正电子发射断层扫描(PET)已广泛应用于疾病和紊乱的临床诊断。为了获得高质量的PET图像,需要向人体注射标准剂量的放射性核素(示踪剂),这不可避免地增加了辐射暴露的风险。解决这个问题的一种可能方法是从低剂量PET图像及其相应的多模态磁共振(MR)图像预测标准剂量PET图像。受基于补丁的稀疏表示(SR)在超分辨率图像重建中取得成功的启发,我们提出了一种基于映射的SR(m-SR)框架用于标准剂量PET图像预测。与传统的基于补丁的SR相比,我们的方法使用映射策略来确保从多模态MR图像和低剂量PET图像估计的稀疏系数可以直接应用于标准剂量PET图像的预测。由于多模态MR图像(或低剂量PET图像)与标准剂量PET图像之间的映射可能特别复杂,单步映射通常是不够的。为此,因此提出了一种增量细化框架。具体来说,将预测的标准剂量PET图像进一步映射到目标标准剂量PET图像,然后再次执行SR以预测新的标准剂量PET图像。这个过程可以重复进行迭代的预测细化。此外,还进一步使用基于补丁选择的字典构建方法来加速预测过程。所提出的方法在一个人脑数据集上得到了验证。实验结果表明,我们的方法在定性和定量测量方面都优于基准方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验