Berglund Ken, Clissold Kara, Li Haofang E, Wen Lei, Park Sung Young, Gleixner Jan, Klein Marguerita E, Lu Dongye, Barter Joseph W, Rossi Mark A, Augustine George J, Yin Henry H, Hochgeschwender Ute
Department of Neurobiology, Duke University, Durham, NC 27710; Department of Neurosurgery, Emory University, Atlanta, GA 30322;
Department of Psychology and Neuroscience, Duke University, Durham, NC 27708;
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):E358-67. doi: 10.1073/pnas.1510899113. Epub 2016 Jan 5.
Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales.
发光视蛋白是荧光素酶和视蛋白的融合蛋白,通过选择外在物理光或内在生物光来激活,从而能够以不同的时间和空间分辨率对神经回路进行研究。基于之前野生型高斯荧光素酶与通道视紫红质融合体的开发,在此我们通过将明亮的高斯荧光素酶变体与通道视紫红质融合以激发神经元(发光视蛋白,LMO)或与质子泵融合以抑制神经元(抑制性LMO,iLMO),扩展了发光视蛋白的效用。这些改进的LMO能够在体外和体内可靠地激活或沉默神经元。在海马回路中表达改进的LMO不仅能够以精细的时空分辨率绘制CA1神经元的突触激活图谱,还能够在大时空尺度上驱动节律性回路兴奋。此外,病毒介导的LMO或iLMO在体内黑质中的表达不仅产生了预期的对单个单元活动的双向控制,而且在全身注射荧光素酶底物后对转圈行为产生了相反的影响。因此,虽然LMO保留了被外部光源激活的能力,但通过使相同的视蛋白能够进行非侵入性化学遗传控制,扩展了光遗传学的应用,从而允许同一探针在一系列时空尺度上操纵神经元活动。