Suppr超能文献

光遗传学致动器的非侵入性激活。

Non-invasive activation of optogenetic actuators.

作者信息

Birkner Elisabeth, Berglund Ken, Klein Marguerita E, Augustine George J, Hochgeschwender Ute

机构信息

Neurotransgenic Laboratory, Duke University, Durham, NC, USA.

Department of Neurobiology, Duke University, Durham, NC, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2014 Feb 1;8928. doi: 10.1117/12.2044157. Epub 2014 Mar 5.

Abstract

The manipulation of genetically targeted neurons with light (optogenetics) continues to provide unprecedented avenues into studying the function of the mammalian brain. However, potential translation into the clinical arena faces a number of significant hurdles, foremost among them the need for insertion of optical fibers into the brain to deliver light to opsins expressed on neuronal membranes. In order to overcome these hardware-related problems, we have developed an alternative strategy for delivering light to opsins which does not involve fiber implants. Rather, the light is produced by a protein, luciferase, which oxidizes intravenously applied substrate, thereby emitting bioluminescence. In proof-of-principle studies employing a fusion protein of a light-generating luciferase to a light-sensing opsin (luminopsin), we showed that light emitted by luciferase is indeed able to activate channelrhodopsin, allowing modulation of neuronal activity when expressed in cultured neurons. Here we assessed applicability of the concept in mice expressing luminopsins from viral vectors and from genetically engineered transgenes. The experiments demonstrate that intravenously applied substrate reaches neurons in the brain, causing the luciferase to produce bioluminescence which can be imaged , and that activation of channelrhodopsin by bioluminescence is sufficient to affect behavior. Further developments of such technology based on combining optogenetics with bioluminescence - i.e. combining light-sensing molecules with biologically produced light through luciferases - should bring optogenetics closer to clinical applications.

摘要

利用光对基因靶向神经元进行操控(光遗传学),持续为研究哺乳动物大脑功能提供了前所未有的途径。然而,向临床领域的潜在转化面临诸多重大障碍,其中最主要的是需要将光纤插入大脑,以便向神经元膜上表达的视蛋白传递光。为了克服这些与硬件相关的问题,我们开发了一种向视蛋白传递光的替代策略,该策略不涉及光纤植入。相反,光是由一种蛋白质——荧光素酶产生的,它氧化静脉注射的底物,从而发出生物发光。在原理验证研究中,我们将产生光的荧光素酶与光敏感视蛋白(发光视蛋白)融合,结果表明荧光素酶发出的光确实能够激活通道视紫红质,从而在培养的神经元中表达时实现对神经元活动的调控。在此,我们评估了这一概念在通过病毒载体和基因工程转基因表达发光视蛋白的小鼠中的适用性。实验表明,静脉注射的底物能够到达大脑中的神经元,使荧光素酶产生可成像的生物发光,并且生物发光对通道视紫红质的激活足以影响行为。基于将光遗传学与生物发光相结合的此类技术的进一步发展——即通过荧光素酶将光敏感分子与生物产生的光相结合——应会使光遗传学更接近临床应用。

相似文献

1
Non-invasive activation of optogenetic actuators.
Proc SPIE Int Soc Opt Eng. 2014 Feb 1;8928. doi: 10.1117/12.2044157. Epub 2014 Mar 5.
2
Step-function luminopsins for bimodal prolonged neuromodulation.
J Neurosci Res. 2020 Mar;98(3):422-436. doi: 10.1002/jnr.24424. Epub 2019 Apr 7.
3
Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons.
PLoS One. 2013;8(3):e59759. doi: 10.1371/journal.pone.0059759. Epub 2013 Mar 27.
4
Novel luciferase-opsin combinations for improved luminopsins.
J Neurosci Res. 2020 Mar;98(3):410-421. doi: 10.1002/jnr.24152. Epub 2017 Sep 1.
5
Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation.
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):E358-67. doi: 10.1073/pnas.1510899113. Epub 2016 Jan 5.
6
Combined Optogenetic and Chemogenetic Control of Neurons.
Methods Mol Biol. 2016;1408:207-25. doi: 10.1007/978-1-4939-3512-3_14.
8
Bioluminescence-Optogenetics: A Practical Guide.
Methods Mol Biol. 2022;2525:333-346. doi: 10.1007/978-1-0716-2473-9_26.

引用本文的文献

4
Restoring Function After Severe Spinal Cord Injury Through BioLuminescent-OptoGenetics.
Front Neurol. 2022 Jan 20;12:792643. doi: 10.3389/fneur.2021.792643. eCollection 2021.
5
Optical vagus nerve modulation of heart and respiration via heart-injected retrograde AAV.
Sci Rep. 2021 Feb 11;11(1):3664. doi: 10.1038/s41598-021-83280-3.
6
The BioLuminescent-OptoGenetic in vivo response to coelenterazine is proportional, sensitive, and specific in neocortex.
J Neurosci Res. 2020 Mar;98(3):471-480. doi: 10.1002/jnr.24498. Epub 2019 Sep 23.
7
Step-function luminopsins for bimodal prolonged neuromodulation.
J Neurosci Res. 2020 Mar;98(3):422-436. doi: 10.1002/jnr.24424. Epub 2019 Apr 7.
10
Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation.
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):E358-67. doi: 10.1073/pnas.1510899113. Epub 2016 Jan 5.

本文引用的文献

2
Optical control of mammalian endogenous transcription and epigenetic states.
Nature. 2013 Aug 22;500(7463):472-476. doi: 10.1038/nature12466. Epub 2013 Aug 23.
3
Triple bioluminescence imaging for in vivo monitoring of cellular processes.
Mol Ther Nucleic Acids. 2013 Jun 18;2(6):e99. doi: 10.1038/mtna.2013.25.
4
Injectable, cellular-scale optoelectronics with applications for wireless optogenetics.
Science. 2013 Apr 12;340(6129):211-6. doi: 10.1126/science.1232437.
5
Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons.
PLoS One. 2013;8(3):e59759. doi: 10.1371/journal.pone.0059759. Epub 2013 Mar 27.
6
Recent advances in optogenetics and pharmacogenetics.
Brain Res. 2013 May 20;1511:1-5. doi: 10.1016/j.brainres.2013.01.026. Epub 2013 Feb 17.
7
8
Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors.
J Am Chem Soc. 2012 Oct 10;134(40):16480-3. doi: 10.1021/ja3065667. Epub 2012 Sep 27.
9
Color-tuned channelrhodopsins for multiwavelength optogenetics.
J Biol Chem. 2012 Sep 14;287(38):31804-12. doi: 10.1074/jbc.M112.391185. Epub 2012 Jul 27.
10
In vivo gene delivery by nonviral vectors: overcoming hurdles?
Mol Ther. 2012 Jul;20(7):1298-304. doi: 10.1038/mt.2012.79. Epub 2012 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验