Suppr超能文献

人类成纤维细胞核形态的周期性

Periodicity of nuclear morphology in human fibroblasts.

作者信息

Seaman Laura, Meixner Walter, Snyder John, Rajapakse Indika

机构信息

a Department of Computational Medicine and Bioinformatics ; University of Michigan ; Ann Arbor , MI USA.

b Microsoft Research ; Redmond , WA USA.

出版信息

Nucleus. 2015;6(5):408-16. doi: 10.1080/19491034.2015.1095432.

Abstract

MOTIVATION

Morphology of the cell nucleus has been used as a key indicator of disease state and prognosis, but typically without quantitative rigor. It is also not well understood how nuclear morphology varies with time across different genetic backgrounds in healthy cells. To help answer these questions we measured the size and shape of nuclei in cell-cycle-synchronized primary human fibroblasts from 6 different individuals at 32 time points over a 75 hour period.

RESULTS

The nucleus was modeled as an ellipsoid and its dynamics analyzed. Shape and volume changed significantly over this time. Two prominent frequencies were found in the 6 individuals: a 17 hour period consistent with the cell cycle and a 26 hour period. Our findings suggest that the shape of the nucleus changes over time and thus any time-invariant shape property may provide a misleading characterization of cellular populations at different phases of the cell cycle. The proposed methodology provides a general method to analyze morphological change using multiple time points even for non-live-cell experiments.

摘要

动机

细胞核形态已被用作疾病状态和预后的关键指标,但通常缺乏定量的严谨性。目前对于健康细胞中不同遗传背景下细胞核形态如何随时间变化也尚未完全了解。为了帮助回答这些问题,我们在75小时内的32个时间点测量了来自6个不同个体的细胞周期同步化的原代人成纤维细胞核的大小和形状。

结果

将细胞核建模为椭球体并分析其动态变化。在此期间,形状和体积发生了显著变化。在这6个个体中发现了两个显著的频率:一个与细胞周期一致的17小时周期和一个26小时周期。我们的研究结果表明,细胞核的形状会随时间变化,因此任何不随时间变化的形状特性可能会对细胞周期不同阶段的细胞群体特征给出误导性描述。所提出的方法提供了一种通用方法,即使对于非活细胞实验,也能使用多个时间点来分析形态变化。

相似文献

1
Periodicity of nuclear morphology in human fibroblasts.
Nucleus. 2015;6(5):408-16. doi: 10.1080/19491034.2015.1095432.
2
Cell shape dependent regulation of nuclear morphology.
Biomaterials. 2015 Oct;67:129-36. doi: 10.1016/j.biomaterials.2015.07.017. Epub 2015 Jul 14.
3
The nucleus is irreversibly shaped by motion of cell boundaries in cancer and non-cancer cells.
J Cell Physiol. 2018 Feb;233(2):1446-1454. doi: 10.1002/jcp.26031. Epub 2017 Jul 31.
4
Volume regulation and shape bifurcation in the cell nucleus.
J Cell Sci. 2015 Sep 15;128(18):3375-85. doi: 10.1242/jcs.166330. Epub 2015 Aug 4.
5
Moving Cell Boundaries Drive Nuclear Shaping during Cell Spreading.
Biophys J. 2015 Aug 18;109(4):670-86. doi: 10.1016/j.bpj.2015.07.006.
6
Redox rhythmicity: clocks at the core of temporal coherence.
Bioessays. 2007 May;29(5):465-73. doi: 10.1002/bies.20575.
8
Diurnal and seasonal rhythms of neuronal activity in the suprachiasmatic nucleus of humans.
J Biol Rhythms. 1993 Winter;8(4):283-95. doi: 10.1177/074873049300800402.
10
Spontaneous synchronization of coupled circadian oscillators.
Biophys J. 2005 Jul;89(1):120-9. doi: 10.1529/biophysj.104.058388. Epub 2005 Apr 22.

引用本文的文献

3
Integrative genome modeling platform reveals essentiality of rare contact events in 3D genome organizations.
Nat Methods. 2022 Aug;19(8):938-949. doi: 10.1038/s41592-022-01527-x. Epub 2022 Jul 11.
4
Nuclear Envelope Alterations in Myotonic Dystrophy Type 1 Patient-Derived Fibroblasts.
Int J Mol Sci. 2022 Jan 4;23(1):522. doi: 10.3390/ijms23010522.
5
Deformation of the nucleus by TGFβ1 via the remodeling of nuclear envelope and histone isoforms.
Epigenetics Chromatin. 2022 Jan 4;15(1):1. doi: 10.1186/s13072-021-00434-3.
6
Three-Dimensional Printability of an ECM-Based Gelatin Methacryloyl (GelMA) Biomaterial for Potential Neuroregeneration.
ACS Omega. 2021 Jul 19;6(33):21368-21383. doi: 10.1021/acsomega.1c01903. eCollection 2021 Aug 24.
8
3D Shape Modeling for Cell Nuclear Morphological Analysis and Classification.
Sci Rep. 2018 Sep 12;8(1):13658. doi: 10.1038/s41598-018-31924-2.

本文引用的文献

1
Exploring the function of cell shape and size during mitosis.
Dev Cell. 2014 Apr 28;29(2):159-69. doi: 10.1016/j.devcel.2014.04.009.
2
Sizing and shaping the nucleus: mechanisms and significance.
Curr Opin Cell Biol. 2014 Jun;28:16-27. doi: 10.1016/j.ceb.2014.01.003. Epub 2014 Feb 4.
3
Decoding information in cell shape.
Cell. 2013 Sep 12;154(6):1356-69. doi: 10.1016/j.cell.2013.08.026.
4
Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation.
Dev Cell. 2013 May 13;25(3):270-83. doi: 10.1016/j.devcel.2013.03.014. Epub 2013 Apr 25.
5
The nuclear envelope environment and its cancer connections.
Nat Rev Cancer. 2012 Feb 16;12(3):196-209. doi: 10.1038/nrc3219.
6
Transcription factories in the context of the nuclear and genome organization.
Nucleic Acids Res. 2011 Nov;39(21):9085-92. doi: 10.1093/nar/gkr683. Epub 2011 Aug 31.
7
Synchronization of mammalian cell cultures by serum deprivation.
Methods Mol Biol. 2011;761:75-83. doi: 10.1007/978-1-61779-182-6_5.
8
Nuclear shape, mechanics, and mechanotransduction.
Circ Res. 2008 Jun 6;102(11):1307-18. doi: 10.1161/CIRCRESAHA.108.173989.
9
In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state.
Nature. 2007 Jul 19;448(7151):318-24. doi: 10.1038/nature05944. Epub 2007 Jun 6.
10
Cellular oscillators: rhythmic gene expression and metabolism.
Curr Opin Cell Biol. 2005 Apr;17(2):223-9. doi: 10.1016/j.ceb.2005.01.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验