Suppr超能文献

三维形状建模用于细胞核形态分析和分类。

3D Shape Modeling for Cell Nuclear Morphological Analysis and Classification.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA.

Statistics Online Computational Resource (SOCR), Department of Health Behavior and Biological Sciences, University of Michigan School of Nursing, Ann Arbor, MI, USA.

出版信息

Sci Rep. 2018 Sep 12;8(1):13658. doi: 10.1038/s41598-018-31924-2.

Abstract

Quantitative analysis of morphological changes in a cell nucleus is important for the understanding of nuclear architecture and its relationship with pathological conditions such as cancer. However, dimensionality of imaging data, together with a great variability of nuclear shapes, presents challenges for 3D morphological analysis. Thus, there is a compelling need for robust 3D nuclear morphometric techniques to carry out population-wide analysis. We propose a new approach that combines modeling, analysis, and interpretation of morphometric characteristics of cell nuclei and nucleoli in 3D. We used robust surface reconstruction that allows accurate approximation of 3D object boundary. Then, we computed geometric morphological measures characterizing the form of cell nuclei and nucleoli. Using these features, we compared over 450 nuclei with about 1,000 nucleoli of epithelial and mesenchymal prostate cancer cells, as well as 1,000 nuclei with over 2,000 nucleoli from serum-starved and proliferating fibroblast cells. Classification of sets of 9 and 15 cells achieved accuracy of 95.4% and 98%, respectively, for prostate cancer cells, and 95% and 98% for fibroblast cells. To our knowledge, this is the first attempt to combine these methods for 3D nuclear shape modeling and morphometry into a highly parallel pipeline workflow for morphometric analysis of thousands of nuclei and nucleoli in 3D.

摘要

对细胞核形态变化进行定量分析对于理解核结构及其与癌症等病理状况的关系非常重要。然而,成像数据的维度以及细胞核形状的巨大变异性给 3D 形态分析带来了挑战。因此,迫切需要稳健的 3D 核形态计量技术来进行全人群分析。我们提出了一种新的方法,该方法结合了细胞和核仁的形态计量特征的建模、分析和解释。我们使用了鲁棒的表面重建,允许对 3D 对象边界进行精确逼近。然后,我们计算了描述细胞核和核仁形状的几何形态学度量。使用这些特征,我们比较了上皮和间充质前列腺癌细胞的超过 450 个细胞核和约 1000 个核仁,以及血清饥饿和增殖成纤维细胞的超过 1000 个细胞核和约 2000 个核仁。对于前列腺癌细胞,9 个和 15 个细胞的集合分类的准确率分别达到 95.4%和 98%,对于成纤维细胞的准确率分别达到 95%和 98%。据我们所知,这是首次尝试将这些方法结合起来,用于 3D 细胞核形状建模和形态计量学,以形成用于 3D 中数千个细胞核和核仁的形态计量分析的高度并行流水线工作流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac70/6135819/20e2d9b99da5/41598_2018_31924_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验