Frolich Laura, Winkler Irene, Muller Klaus-Robert, Samek Wojciech
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:1942-5. doi: 10.1109/EMBC.2015.7318764.
Artefacts in recordings of the electroencephalogram (EEG) are a common problem in Brain-Computer Interfaces (BCIs). Artefacts make it difficult to calibrate from training sessions, resulting in low test performance, or lead to artificially high performance when unintentionally used for BCI control. We investigate different artefacts' effects on motor-imagery based BCI relying on Common Spatial Patterns (CSP). Data stem from an 80-subject BCI study. We use the recently developed classifier IC_MARC to classify independent components of EEG data into neural and five classes of artefacts. We find that muscle, but not ocular, artefacts adversely affect BCI performance when all 119 EEG channels are used. Artefacts have little influence when using 48 centrally located EEG channels in a configuration previously found to be optimal.
脑电图(EEG)记录中的伪迹是脑机接口(BCI)中的常见问题。伪迹使得难以从训练会话中进行校准,导致测试性能低下,或者在无意中用于BCI控制时导致人为的高性能。我们研究了不同伪迹对基于运动想象的BCI(依赖于共同空间模式(CSP))的影响。数据来自一项有80名受试者的BCI研究。我们使用最近开发的分类器IC_MARC将EEG数据的独立成分分类为神经成分和五类伪迹。我们发现,当使用所有119个EEG通道时,肌肉伪迹而非眼动伪迹会对BCI性能产生不利影响。在使用先前发现为最佳配置的48个位于中央的EEG通道时,伪迹影响很小。