Song Dong, Robinson Brian S, Hampson Robert E, Marmarelis Vasilis Z, Deadwyler Sam A, Berger Theodore W
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:3961-4. doi: 10.1109/EMBC.2015.7319261.
In order to build hippocampal prostheses for restoring memory functions, we build multi-input, multi-output (MIMO) nonlinear dynamical models of the human hippocampus. Spike trains are recorded from the hippocampal CA3 and CA1 regions of epileptic patients performing a memory-dependent delayed match-to-sample task. Using CA3 and CA1 spike trains as inputs and outputs respectively, second-order sparse generalized Laguerre-Volterra models are estimated with group lasso and local coordinate descent methods to capture the nonlinear dynamics underlying the spike train transformations. These models can accurately predict the CA1 spike trains based on the ongoing CA3 spike trains and thus will serve as the computational basis of the hippocampal memory prosthesis.
为了构建用于恢复记忆功能的海马假体,我们建立了人类海马体的多输入多输出(MIMO)非线性动力学模型。从正在执行依赖记忆的延迟样本匹配任务的癫痫患者的海马CA3和CA1区域记录尖峰序列。分别将CA3和CA1尖峰序列用作输入和输出,使用组套索和局部坐标下降方法估计二阶稀疏广义拉盖尔-沃尔泰拉模型,以捕捉尖峰序列转换背后的非线性动力学。这些模型可以根据正在进行的CA3尖峰序列准确预测CA1尖峰序列,因此将作为海马记忆假体的计算基础。