基于 ResNet 和 CBAM 的深度学习模型在 CT 图像上对肺结节良恶性分类。

Deep-Learning Model of ResNet Combined with CBAM for Malignant-Benign Pulmonary Nodules Classification on Computed Tomography Images.

机构信息

Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China.

Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China.

出版信息

Medicina (Kaunas). 2023 Jun 5;59(6):1088. doi: 10.3390/medicina59061088.

Abstract

: Lung cancer remains a leading cause of cancer mortality worldwide. Accurately classifying benign pulmonary nodules and malignant ones is crucial for early diagnosis and improved patient outcomes. The purpose of this study is to explore the deep-learning model of ResNet combined with a convolutional block attention module (CBAM) for the differentiation between benign and malignant lung cancer, based on computed tomography (CT) images, morphological features, and clinical information. : In this study, 8241 CT slices containing pulmonary nodules were retrospectively included. A random sample comprising 20% ( = 1647) of the images was used as the test set, and the remaining data were used as the training set. ResNet combined CBAM (ResNet-CBAM) was used to establish classifiers on the basis of images, morphological features, and clinical information. Nonsubsampled dual-tree complex contourlet transform (NSDTCT) combined with SVM classifier (NSDTCT-SVM) was used as a comparative model. : The AUC and the accuracy of the CBAM-ResNet model were 0.940 and 0.867, respectively, in test set when there were only images as inputs. By combining the morphological features and clinical information, CBAM-ResNet shows better performance (AUC: 0.957, accuracy: 0.898). In comparison, a radiomic analysis using NSDTCT-SVM achieved AUC and accuracy values of 0.807 and 0.779, respectively. : Our findings demonstrate that deep-learning models, combined with additional information, can enhance the classification performance of pulmonary nodules. This model can assist clinicians in accurately diagnosing pulmonary nodules in clinical practice.

摘要

肺癌仍然是全球癌症死亡的主要原因。准确区分良性和恶性肺结节对于早期诊断和改善患者预后至关重要。本研究旨在探索基于 CT 图像、形态学特征和临床信息的 ResNet 与卷积块注意力模块(CBAM)相结合的深度学习模型,用于区分良性和恶性肺癌。

在这项研究中,回顾性纳入了 8241 张包含肺结节的 CT 切片。随机抽取 20%(=1647)的图像作为测试集,其余数据作为训练集。基于图像、形态学特征和临床信息,使用 ResNet 与 CBAM 相结合(ResNet-CBAM)建立分类器。使用非下采样双树复小波变换(NSDTCT)与 SVM 分类器(NSDTCT-SVM)相结合作为对比模型。

当仅输入图像时,CBAM-ResNet 模型在测试集中的 AUC 和准确率分别为 0.940 和 0.867。通过结合形态学特征和临床信息,CBAM-ResNet 表现出更好的性能(AUC:0.957,准确率:0.898)。相比之下,使用 NSDTCT-SVM 的放射组学分析分别获得 AUC 和准确率值 0.807 和 0.779。

我们的研究结果表明,深度学习模型结合其他信息可以提高肺结节的分类性能。该模型可以帮助临床医生在临床实践中准确诊断肺结节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e1/10301795/2f4cfc7dfc0b/medicina-59-01088-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索