Suppr超能文献

再度审视多毛油菜(甘蓝型油菜):在AtGL3增强的多毛叶背景下下调TTG1可改善生长、叶片毛状体覆盖率及代谢物基因表达多样性。

Hairy Canola (Brasssica napus) re-visited: Down-regulating TTG1 in an AtGL3-enhanced hairy leaf background improves growth, leaf trichome coverage, and metabolite gene expression diversity.

作者信息

Alahakoon Ushan I, Taheri Ali, Nayidu Naghabushana K, Epp Delwin, Yu Min, Parkin Isobel, Hegedus Dwayne, Bonham-Smith Peta, Gruber Margaret Y

机构信息

Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N0X2, Canada.

Present address: DOW Agro-Sciences, 101-421 Downey Rd., Saskatoon, SK, S7N4L8, Canada.

出版信息

BMC Plant Biol. 2016 Jan 6;16:12. doi: 10.1186/s12870-015-0680-5.

Abstract

BACKGROUND

Through evolution, some plants have developed natural resistance to insects by having hairs (trichomes) on leaves and other tissues. The hairy trait has been neglected in Brassica breeding programs, which mainly focus on disease resistance, yield, and overall crop productivity. In Arabidopsis, a network of three classes of proteins consisting of TTG1 (a WD40 repeat protein), GL3 (a bHLH factor) and GL1 (a MYB transcription factor), activates trichome initiation and patterning. Introduction of a trichome regulatory gene AtGL3 from Arabidopsis into semi-glabrous Brassica napus resulted in hairy canola plants which showed tolerance to flea beetles and diamondback moths; however plant growth was negatively affected. In addition, the role of BnTTG1 transcription in the new germplasm was not understood.

RESULTS

Here, we show that two ultra-hairy lines (K-5-8 and K-6-3) with BnTTG1 knock-down in the hairy AtGL3+ B. napus background showed stable enhancement of trichome coverage, density, and length and restored wild type growth similar to growth of the semi-glabrous Westar plant. In contrast, over-expression of BnTTG1 in the hairy AtGL3+ B. napus background gave consistently glabrous plants of very low fertility and poor stability, with only one glabrous plant (O-3-7) surviving to the T3 generation. Q-PCR trichome gene expression data in leaf samples combining several leaf stages for these lines suggested that BnGL2 controlled B. napus trichome length and out-growth and that strong BnTTG1 transcription together with strong GL3 expression inhibited this process. Weak expression of BnTRY in both glabrous and trichome-bearing leaves of B. napus in the latter Q-PCR experiment suggested that TRY may have functions other than as an inhibitor of trichome initiation in the Brassicas. A role for BnTTG1 in the lateral inhibition of trichome formation in neighbouring cells was also proposed for B. napus. RNA sequencing of first leaves identified a much larger array of genes with altered expression patterns in the K-5-8 line compared to the hairy AtGL3(+) B. napus background (relative to the Westar control plant). These genes particularly included transcription factors, protein degradation and modification genes, but also included pathways that coded for anthocyanins, flavonols, terpenes, glucosinolates, alkaloids, shikimates, cell wall biosynthesis, and hormones. A 2nd Q-PCR experiment was conducted on redox, cell wall carbohydrate, lignin, and trichome genes using young first leaves, including T4 O-3-7-5 plants that had partially reverted to yield two linked growth and trichome phenotypes. Most of the trichome genes tested showed to be consistant with leaf trichome phenotypes and with RNA sequencing data in three of the lines. Two redox genes showed highest overall expression in K-5-8 leaves and lowest in O-3-7-5 leaves, while one redox gene and three cell wall genes were consistently higher in the two less robust lines compared with the two robust lines.

CONCLUSION

The data support the strong impact of BnTTG1 knockdown (in the presence of strong AtGL3 expression) at restoring growth, enhancing trichome coverage and length, and enhancing expression and diversity of growth, metabolic, and anti-oxidant genes important for stress tolerance and plant health in B. napus. Our data also suggests that the combination of strong (up-regulated) BnTTG1 expression in concert with strong AtGL3 expression is unstable and lethal to the plant.

摘要

背景

在进化过程中,一些植物通过在叶片和其他组织上生长毛状体(表皮毛)来形成对昆虫的天然抗性。在主要关注抗病性、产量和整体作物生产力的油菜育种计划中,表皮毛性状一直被忽视。在拟南芥中,由TTG1(一种WD40重复蛋白)、GL3(一种bHLH因子)和GL1(一种MYB转录因子)组成的三类蛋白质网络激活表皮毛的起始和模式形成。将来自拟南芥的表皮毛调控基因AtGL3导入半无毛的甘蓝型油菜中,得到了有毛的油菜植株,这些植株对跳甲和小菜蛾具有耐受性;然而,植株生长受到负面影响。此外,新种质中BnTTG1转录的作用尚不清楚。

结果

在这里,我们表明,在有毛的AtGL3 +甘蓝型油菜背景中敲除BnTTG1的两个超有毛系(K-5-8和K-6-3)显示表皮毛覆盖度、密度和长度稳定增加,并恢复了类似于半无毛的Westar植株的野生型生长。相比之下,在有毛的AtGL3 +甘蓝型油菜背景中过表达BnTTG1得到的植株始终是无毛的,育性很低且稳定性差,只有一株无毛植株(O-3-7)存活到T3代。对这些品系几个叶龄阶段的叶片样本进行的Q-PCR表皮毛基因表达数据表明,BnGL2控制甘蓝型油菜表皮毛的长度和生长,并且强BnTTG1转录与强GL3表达一起抑制了这一过程。在后一个Q-PCR实验中,甘蓝型油菜无毛和有表皮毛叶片中BnTRY的弱表达表明,TRY在芸苔属中可能具有除作为表皮毛起始抑制剂之外的其他功能。还提出了BnTTG1在甘蓝型油菜相邻细胞表皮毛形成的侧向抑制中的作用。与有毛的AtGL3(+)甘蓝型油菜背景(相对于Westar对照植株)相比,对K-5-8系第一片叶的RNA测序鉴定出大量表达模式改变的基因。这些基因特别包括转录因子、蛋白质降解和修饰基因,但也包括编码花青素、黄酮醇、萜类、芥子油苷、生物碱、莽草酸、细胞壁生物合成和激素的途径。使用幼嫩的第一片叶,包括部分回复以产生两种相关生长和表皮毛表型的T4 O-3-7-5植株,对氧化还原、细胞壁碳水化合物、木质素和表皮毛基因进行了第二次Q-PCR实验。测试的大多数表皮毛基因显示与叶表皮毛表型以及三个品系中的RNA测序数据一致。两个氧化还原基因在K-5-8叶片中的总体表达最高,在O-3-7-5叶片中最低,而一个氧化还原基因和三个细胞壁基因在两个生长较弱的品系中始终高于两个生长健壮的品系。

结论

数据支持在强AtGL3表达存在的情况下敲除BnTTG1对恢复甘蓝型油菜生长、增加表皮毛覆盖度和长度以及增强对胁迫耐受性和植物健康重要的生长、代谢和抗氧化基因的表达及多样性具有强烈影响。我们的数据还表明,强(上调)BnTTG1表达与强AtGL3表达的组合对植物是不稳定且致死的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ac4/4704247/00e44f957082/12870_2015_680_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验