Suppr超能文献

分支潜在神经映射

Branched Latent Neural Maps.

作者信息

Salvador Matteo, Marsden Alison Lesley

机构信息

Institute for Computational and Mathematical Engineering, Stanford University, California, USA.

Cardiovascular Institute, Stanford University, California, USA.

出版信息

Comput Methods Appl Mech Eng. 2024 Jan;418(Pt A). doi: 10.1016/j.cma.2023.116499. Epub 2023 Oct 9.

Abstract

We introduce Branched Latent Neural Maps (BLNMs) to learn finite dimensional input-output maps encoding complex physical processes. A BLNM is defined by a simple and compact feedforward partially-connected neural network that structurally disentangles inputs with different intrinsic roles, such as the time variable from model parameters of a differential equation, while transferring them into a generic field of interest. BLNMs leverage latent outputs to enhance the learned dynamics and break the curse of dimensionality by showing excellent in-distribution generalization properties with small training datasets and short training times on a single processor. Indeed, their in-distribution generalization error remains comparable regardless of the adopted discretization during the testing phase. Moreover, the partial connections, in place of a fully-connected structure, significantly reduce the number of tunable parameters. We show the capabilities of BLNMs in a challenging test case involving biophysically detailed electrophysiology simulations in a biventricular cardiac model of a pediatric patient with hypoplastic left heart syndrome. The model includes a 1D Purkinje network for fast conduction and a 3D heart-torso geometry. Specifically, we trained BLNMs on 150 in silico generated 12-lead electrocardiograms (ECGs) while spanning 7 model parameters, covering cell-scale, organ-level and electrical dyssynchrony. Although the 12-lead ECGs manifest very fast dynamics with sharp gradients, after automatic hyperparameter tuning the optimal BLNM, trained in less than 3 hours on a single CPU, retains just 7 hidden layers and 19 neurons per layer. The resulting mean square error is on the order of on an independent test dataset comprised of 50 additional electrophysiology simulations. In the online phase, the BLNM allows for 5000x faster real-time simulations of cardiac electrophysiology on a single core standard computer and can be employed to solve inverse problems via global optimization in a few seconds of computational time. This paper provides a novel computational tool to build reliable and efficient reduced-order models for digital twinning in engineering applications. The Julia implementation is publicly available under MIT License at https://github.com/StanfordCBCL/BLNM.jl.

摘要

我们引入分支潜在神经映射(BLNMs)来学习对编码复杂物理过程的有限维输入 - 输出映射进行学习。一个BLNM由一个简单且紧凑的前馈部分连接神经网络定义,该网络在结构上区分具有不同内在作用的输入,例如微分方程模型参数中的时间变量,同时将它们转移到一个通用的感兴趣领域。BLNMs利用潜在输出增强学习到的动力学,并通过在小训练数据集上展示出色的分布内泛化特性以及在单个处理器上短训练时间来打破维度诅咒。实际上,无论在测试阶段采用何种离散化方法,它们的分布内泛化误差都保持相当。此外,部分连接代替全连接结构显著减少了可调参数的数量。我们在一个具有挑战性的测试案例中展示了BLNMs的能力,该案例涉及对患有左心发育不全综合征的儿科患者的双心室心脏模型进行生物物理详细的电生理模拟。该模型包括用于快速传导的一维浦肯野网络和三维心脏 - 躯干几何结构。具体而言,我们在跨越7个模型参数(涵盖细胞尺度、器官水平和电不同步)的150个计算机模拟生成的12导联心电图(ECG)上训练BLNMs。尽管12导联心电图表现出具有陡峭梯度的非常快速动力学,但在自动超参数调整后,在单个CPU上不到3小时内训练得到的最优BLNM仅保留7个隐藏层且每层19个神经元。在由50个额外电生理模拟组成的独立测试数据集上,所得均方误差约为 。在在线阶段情况下,BLNM允许在单核标准计算机上对心脏电生理进行快5000倍的实时模拟,并且可用于在几秒钟的计算时间内通过全局优化解决逆问题。本文提供了一种新颖的计算工具,用于在工程应用中构建用于数字孪生的可靠且高效降阶模型。Julia实现根据麻省理工学院许可在https://github.com/StanfordCBCL/BLNM.jl上公开可用。

相似文献

1
Branched Latent Neural Maps.分支潜在神经映射
Comput Methods Appl Mech Eng. 2024 Jan;418(Pt A). doi: 10.1016/j.cma.2023.116499. Epub 2023 Oct 9.
3
Digital twinning of cardiac electrophysiology for congenital heart disease.心脏电生理学的数字孪生用于先天性心脏病。
J R Soc Interface. 2024 Jun;21(215):20230729. doi: 10.1098/rsif.2023.0729. Epub 2024 Jun 5.
4
Deep convolutional neural network and IoT technology for healthcare.用于医疗保健的深度卷积神经网络和物联网技术。
Digit Health. 2024 Jan 17;10:20552076231220123. doi: 10.1177/20552076231220123. eCollection 2024 Jan-Dec.

引用本文的文献

本文引用的文献

5
Effects of cardiac growth on electrical dyssynchrony in the single ventricle patient.心脏生长对单心室患者电不同步的影响。
Comput Methods Biomech Biomed Engin. 2024 Jun;27(8):1011-1027. doi: 10.1080/10255842.2023.2222203. Epub 2023 Jun 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验