Suppr超能文献

心脏电生理学的数字孪生用于先天性心脏病。

Digital twinning of cardiac electrophysiology for congenital heart disease.

机构信息

Institute for Computational and Mathematical Engineering, Stanford University , Stanford, CA, USA.

Cardiovascular Institute, Stanford University , Stanford, CA, USA.

出版信息

J R Soc Interface. 2024 Jun;21(215):20230729. doi: 10.1098/rsif.2023.0729. Epub 2024 Jun 5.

Abstract

In recent years, blending mechanistic knowledge with machine learning has had a major impact in digital healthcare. In this work, we introduce a computational pipeline to build certified digital replicas of cardiac electrophysiology in paediatric patients with congenital heart disease. We construct the patient-specific geometry by means of semi-automatic segmentation and meshing tools. We generate a dataset of electrophysiology simulations covering cell-to-organ level model parameters and using rigorous mathematical models based on differential equations. We previously proposed Branched Latent Neural Maps (BLNMs) as an accurate and efficient means to recapitulate complex physical processes in a neural network. Here, we employ BLNMs to encode the parametrized temporal dynamics of 12-lead electrocardiograms (ECGs). BLNMs act as a geometry-specific surrogate model of cardiac function for fast and robust parameter estimation to match clinical ECGs in paediatric patients. Identifiability and trustworthiness of calibrated model parameters are assessed by sensitivity analysis and uncertainty quantification.

摘要

近年来,将机械知识与机器学习相结合在数字医疗保健领域产生了重大影响。在这项工作中,我们引入了一个计算流程,以构建患有先天性心脏病的儿科患者心脏电生理学的认证数字复制品。我们通过半自动分割和网格工具构建患者特定的几何形状。我们生成了一个电生理学模拟数据集,涵盖细胞到器官水平的模型参数,并使用基于微分方程的严格数学模型。我们之前提出了分支潜在神经网络映射 (BLNMs) 作为在神经网络中准确和高效地再现复杂物理过程的方法。在这里,我们使用 BLNMs 对 12 导联心电图 (ECG) 的参数化时间动态进行编码。BLNMs 作为心脏功能的特定于几何形状的替代模型,用于快速稳健的参数估计,以匹配儿科患者的临床 ECG。通过敏感性分析和不确定性量化来评估校准模型参数的可识别性和可信度。

相似文献

1
Digital twinning of cardiac electrophysiology for congenital heart disease.
J R Soc Interface. 2024 Jun;21(215):20230729. doi: 10.1098/rsif.2023.0729. Epub 2024 Jun 5.
2
Digital twinning of cardiac electrophysiology for congenital heart disease.
bioRxiv. 2023 Nov 28:2023.11.27.568942. doi: 10.1101/2023.11.27.568942.
3
Branched Latent Neural Maps.
Comput Methods Appl Mech Eng. 2024 Jan;418(Pt A). doi: 10.1016/j.cma.2023.116499. Epub 2023 Oct 9.
4
Whole-heart electromechanical simulations using Latent Neural Ordinary Differential Equations.
NPJ Digit Med. 2024 Apr 11;7(1):90. doi: 10.1038/s41746-024-01084-x.
6
Unsupervised stochastic learning and reduced order modeling for global sensitivity analysis in cardiac electrophysiology models.
Comput Methods Programs Biomed. 2024 Oct;255:108311. doi: 10.1016/j.cmpb.2024.108311. Epub 2024 Jul 8.
7
Fast and robust parameter estimation with uncertainty quantification for the cardiac function.
Comput Methods Programs Biomed. 2023 Apr;231:107402. doi: 10.1016/j.cmpb.2023.107402. Epub 2023 Feb 4.
8
A Framework for the generation of digital twins of cardiac electrophysiology from clinical 12-leads ECGs.
Med Image Anal. 2021 Jul;71:102080. doi: 10.1016/j.media.2021.102080. Epub 2021 Apr 22.
10
Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty.
Int J Numer Method Biomed Eng. 2017 Mar;33(3). doi: 10.1002/cnm.2799. Epub 2016 Jun 8.

引用本文的文献

1
The impact of experimental designs & system sloppiness on the personalisation process: A cardiovascular perspective.
PLoS One. 2025 Jun 24;20(6):e0326112. doi: 10.1371/journal.pone.0326112. eCollection 2025.
2
A universal material model subroutine for soft matter systems.
Eng Comput. 2025;41(2):905-927. doi: 10.1007/s00366-024-02031-w. Epub 2024 Sep 18.
3
Artificial Intelligence in Pediatric Electrocardiography: A Comprehensive Review.
Children (Basel). 2024 Dec 27;12(1):25. doi: 10.3390/children12010025.
4
Digital Twins for Clinical and Operational Decision-Making: Scoping Review.
J Med Internet Res. 2025 Jan 8;27:e55015. doi: 10.2196/55015.
5
Cardiovascular care with digital twin technology in the era of generative artificial intelligence.
Eur Heart J. 2024 Sep 26;45(45):4808-21. doi: 10.1093/eurheartj/ehae619.

本文引用的文献

1
Digital Twinning of Cardiac Electrophysiology Models From the Surface ECG: A Geodesic Backpropagation Approach.
IEEE Trans Biomed Eng. 2024 Apr;71(4):1281-1288. doi: 10.1109/TBME.2023.3331876. Epub 2024 Mar 20.
2
Learning reduced-order models for cardiovascular simulations with graph neural networks.
Comput Biol Med. 2024 Jan;168:107676. doi: 10.1016/j.compbiomed.2023.107676. Epub 2023 Nov 19.
3
Branched Latent Neural Maps.
Comput Methods Appl Mech Eng. 2024 Jan;418(Pt A). doi: 10.1016/j.cma.2023.116499. Epub 2023 Oct 9.
4
Cell to whole organ global sensitivity analysis on a four-chamber heart electromechanics model using Gaussian processes emulators.
PLoS Comput Biol. 2023 Jun 26;19(6):e1011257. doi: 10.1371/journal.pcbi.1011257. eCollection 2023 Jun.
5
Effects of cardiac growth on electrical dyssynchrony in the single ventricle patient.
Comput Methods Biomech Biomed Engin. 2024 Jun;27(8):1011-1027. doi: 10.1080/10255842.2023.2222203. Epub 2023 Jun 14.
6
Fast and robust parameter estimation with uncertainty quantification for the cardiac function.
Comput Methods Programs Biomed. 2023 Apr;231:107402. doi: 10.1016/j.cmpb.2023.107402. Epub 2023 Feb 4.
7
Comparison between conduction system pacing and cardiac resynchronization therapy in right bundle branch block patients.
Front Physiol. 2022 Sep 21;13:1011566. doi: 10.3389/fphys.2022.1011566. eCollection 2022.
8
Impact and Modifiers of Ventricular Pacing in Patients With Single Ventricle Circulation.
J Am Coll Cardiol. 2022 Aug 30;80(9):902-914. doi: 10.1016/j.jacc.2022.05.053.
9
An Integrated Workflow for Building Digital Twins of Cardiac Electromechanics-A Multi-Fidelity Approach for Personalising Active Mechanics.
Mathematics (Basel). 2022 Mar 4;10(5):823. doi: 10.3390/math10050823. eCollection 2022 Mar 1.
10
Optimizing ECG to detect echocardiographic left ventricular hypertrophy with computer-based ECG data and machine learning.
PLoS One. 2021 Nov 30;16(11):e0260661. doi: 10.1371/journal.pone.0260661. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验