Institute for Computational and Mathematical Engineering, Stanford University , Stanford, CA, USA.
Cardiovascular Institute, Stanford University , Stanford, CA, USA.
J R Soc Interface. 2024 Jun;21(215):20230729. doi: 10.1098/rsif.2023.0729. Epub 2024 Jun 5.
In recent years, blending mechanistic knowledge with machine learning has had a major impact in digital healthcare. In this work, we introduce a computational pipeline to build certified digital replicas of cardiac electrophysiology in paediatric patients with congenital heart disease. We construct the patient-specific geometry by means of semi-automatic segmentation and meshing tools. We generate a dataset of electrophysiology simulations covering cell-to-organ level model parameters and using rigorous mathematical models based on differential equations. We previously proposed Branched Latent Neural Maps (BLNMs) as an accurate and efficient means to recapitulate complex physical processes in a neural network. Here, we employ BLNMs to encode the parametrized temporal dynamics of 12-lead electrocardiograms (ECGs). BLNMs act as a geometry-specific surrogate model of cardiac function for fast and robust parameter estimation to match clinical ECGs in paediatric patients. Identifiability and trustworthiness of calibrated model parameters are assessed by sensitivity analysis and uncertainty quantification.
近年来,将机械知识与机器学习相结合在数字医疗保健领域产生了重大影响。在这项工作中,我们引入了一个计算流程,以构建患有先天性心脏病的儿科患者心脏电生理学的认证数字复制品。我们通过半自动分割和网格工具构建患者特定的几何形状。我们生成了一个电生理学模拟数据集,涵盖细胞到器官水平的模型参数,并使用基于微分方程的严格数学模型。我们之前提出了分支潜在神经网络映射 (BLNMs) 作为在神经网络中准确和高效地再现复杂物理过程的方法。在这里,我们使用 BLNMs 对 12 导联心电图 (ECG) 的参数化时间动态进行编码。BLNMs 作为心脏功能的特定于几何形状的替代模型,用于快速稳健的参数估计,以匹配儿科患者的临床 ECG。通过敏感性分析和不确定性量化来评估校准模型参数的可识别性和可信度。