Belanger Kayla, Dinis Tony M, Taourirt Sami, Vidal Guillaume, Kaplan David L, Egles Christopher
Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France.
Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA.
Macromol Biosci. 2016 Apr;16(4):472-81. doi: 10.1002/mabi.201500367. Epub 2016 Jan 8.
The repair of large crushed or sectioned segments of peripheral nerves remains a challenge in regenerative medicine due to the complexity of the biological environment and the lack of proper biomaterials and architecture to foster reconstruction. Traditionally such reconstruction is only achieved by using fresh human tissue as a surrogate for the absence of the nerve. However, recent focus in the field has been on new polymer structures and specific biofunctionalization to achieve the goal of peripheral nerve regeneration by developing artificial nerve prostheses. This review presents various tested approaches as well their effectiveness for nerve regrowth and functional recovery.
由于生物环境的复杂性以及缺乏合适的生物材料和结构来促进重建,周围神经大段挤压或离断后的修复仍是再生医学中的一项挑战。传统上,由于缺乏神经替代物,此类重建只能通过使用新鲜人体组织来实现。然而,该领域最近的重点是新型聚合物结构和特定的生物功能化,通过开发人工神经假体来实现周围神经再生的目标。本综述介绍了各种经过测试的方法及其对神经再生和功能恢复的有效性。