Suppr超能文献

可植入神经技术:双向神经接口——应用与超大规模集成电路实现

Implantable neurotechnologies: bidirectional neural interfaces--applications and VLSI circuit implementations.

作者信息

Greenwald Elliot, Masters Matthew R, Thakor Nitish V

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.

Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore.

出版信息

Med Biol Eng Comput. 2016 Jan;54(1):1-17. doi: 10.1007/s11517-015-1429-x. Epub 2016 Jan 11.

Abstract

A bidirectional neural interface is a device that transfers information into and out of the nervous system. This class of devices has potential to improve treatment and therapy in several patient populations. Progress in very large-scale integration has advanced the design of complex integrated circuits. System-on-chip devices are capable of recording neural electrical activity and altering natural activity with electrical stimulation. Often, these devices include wireless powering and telemetry functions. This review presents the state of the art of bidirectional circuits as applied to neuroprosthetic, neurorepair, and neurotherapeutic systems.

摘要

双向神经接口是一种能在神经系统内外传输信息的装置。这类装置有潜力改善多个患者群体的治疗和疗法。超大规模集成电路的进展推动了复杂集成电路的设计。片上系统装置能够记录神经电活动并通过电刺激改变自然活动。通常,这些装置具备无线供电和遥测功能。本综述介绍了应用于神经假体、神经修复和神经治疗系统的双向电路的现状。

相似文献

1
Implantable neurotechnologies: bidirectional neural interfaces--applications and VLSI circuit implementations.
Med Biol Eng Comput. 2016 Jan;54(1):1-17. doi: 10.1007/s11517-015-1429-x. Epub 2016 Jan 11.
2
Implantable neurotechnologies: a review of integrated circuit neural amplifiers.
Med Biol Eng Comput. 2016 Jan;54(1):45-62. doi: 10.1007/s11517-015-1431-3. Epub 2016 Jan 22.
3
Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
Med Biol Eng Comput. 2016 Jan;54(1):23-44. doi: 10.1007/s11517-015-1430-4. Epub 2016 Jan 11.
4
Implantable neurotechnologies: electrical stimulation and applications.
Med Biol Eng Comput. 2016 Jan;54(1):63-76. doi: 10.1007/s11517-015-1442-0. Epub 2016 Jan 11.
5
Neural interfaces for the brain and spinal cord--restoring motor function.
Nat Rev Neurol. 2012 Dec;8(12):690-9. doi: 10.1038/nrneurol.2012.219. Epub 2012 Nov 13.
6
Future developments in brain-machine interface research.
Clinics (Sao Paulo). 2011;66 Suppl 1(Suppl 1):25-32. doi: 10.1590/s1807-59322011001300004.
7
Implantable Neural Interfaces and Wearable Tactile Systems for Bidirectional Neuroprosthetics Systems.
Adv Healthc Mater. 2019 Dec;8(24):e1801345. doi: 10.1002/adhm.201801345. Epub 2019 Nov 25.
9
Fully implantable neural recording and stimulation interfaces: Peripheral nerve interface applications.
J Neurosci Methods. 2020 Mar 1;333:108562. doi: 10.1016/j.jneumeth.2019.108562. Epub 2019 Dec 17.
10
Dynamic Brain-Machine Interface: a novel paradigm for bidirectional interaction between brains and dynamical systems.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4592-5. doi: 10.1109/IEMBS.2011.6091137.

引用本文的文献

3
4
Home Use of a Percutaneous Wireless Intracortical Brain-Computer Interface by Individuals With Tetraplegia.
IEEE Trans Biomed Eng. 2021 Jul;68(7):2313-2325. doi: 10.1109/TBME.2021.3069119. Epub 2021 Jun 17.
5
Progress in Neuroengineering for brain repair: New challenges and open issues.
Brain Neurosci Adv. 2018 May 21;2:2398212818776475. doi: 10.1177/2398212818776475. eCollection 2018 Jan-Dec.
6
A Software-Defined Radio Receiver for Wireless Recording From Freely Behaving Animals.
IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1645-1654. doi: 10.1109/TBCAS.2019.2949233. Epub 2019 Oct 24.
7
A Neuromorphic Prosthesis to Restore Communication in Neuronal Networks.
iScience. 2019 Sep 27;19:402-414. doi: 10.1016/j.isci.2019.07.046. Epub 2019 Aug 1.
8
A Biohybrid Setup for Coupling Biological and Neuromorphic Neural Networks.
Front Neurosci. 2019 May 8;13:432. doi: 10.3389/fnins.2019.00432. eCollection 2019.
9
Numerical optimization of coordinated reset stimulation for desynchronizing neuronal network dynamics.
J Comput Neurosci. 2018 Aug;45(1):45-58. doi: 10.1007/s10827-018-0690-z. Epub 2018 Jun 7.
10
Intraoperative acceleration measurements to quantify improvement in tremor during deep brain stimulation surgery.
Med Biol Eng Comput. 2017 May;55(5):845-858. doi: 10.1007/s11517-016-1559-9. Epub 2016 Sep 8.

本文引用的文献

1
Restoring motor function with bidirectional neural interfaces.
Prog Brain Res. 2015;218:241-52. doi: 10.1016/bs.pbr.2015.01.001. Epub 2015 Mar 28.
2
Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in human amputees.
J Neural Eng. 2015 Apr;12(2):026002. doi: 10.1088/1741-2560/12/2/026002. Epub 2015 Jan 28.
3
Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with NeuroRighter.
Front Neuroeng. 2014 Oct 29;7:40. doi: 10.3389/fneng.2014.00040. eCollection 2014.
4
A neural interface provides long-term stable natural touch perception.
Sci Transl Med. 2014 Oct 8;6(257):257ra138. doi: 10.1126/scitranslmed.3008669.
5
Volitional walking via upper limb muscle-controlled stimulation of the lumbar locomotor center in man.
J Neurosci. 2014 Aug 13;34(33):11131-42. doi: 10.1523/JNEUROSCI.4674-13.2014.
6
Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery.
Front Hum Neurosci. 2014 Jun 27;8:378. doi: 10.3389/fnhum.2014.00378. eCollection 2014.
8
Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans.
Brain. 2014 May;137(Pt 5):1394-409. doi: 10.1093/brain/awu038. Epub 2014 Apr 8.
9
Electrical brain stimulation for epilepsy.
Nat Rev Neurol. 2014 May;10(5):261-70. doi: 10.1038/nrneurol.2014.59. Epub 2014 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验