文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

外显子组测序和CRISPR/Cas基因组编辑确定ZAK突变是人类和小鼠肢体缺陷的一个原因。

Exome sequencing and CRISPR/Cas genome editing identify mutations of ZAK as a cause of limb defects in humans and mice.

作者信息

Spielmann Malte, Kakar Naseebullah, Tayebi Naeimeh, Leettola Catherine, Nürnberg Gudrun, Sowada Nadine, Lupiáñez Darío G, Harabula Izabela, Flöttmann Ricarda, Horn Denise, Chan Wing Lee, Wittler Lars, Yilmaz Rüstem, Altmüller Janine, Thiele Holger, van Bokhoven Hans, Schwartz Charles E, Nürnberg Peter, Bowie James U, Ahmad Jamil, Kubisch Christian, Mundlos Stefan, Borck Guntram

机构信息

Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), 13353 Berlin, Germany;

Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, University of Ulm, 89081 Ulm, Germany; Department of Biotechnology and Informatics, BUITEMS, Quetta, 57789 Pakistan;

出版信息

Genome Res. 2016 Feb;26(2):183-91. doi: 10.1101/gr.199430.115. Epub 2016 Jan 11.


DOI:10.1101/gr.199430.115
PMID:26755636
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4728371/
Abstract

The CRISPR/Cas technology enables targeted genome editing and the rapid generation of transgenic animal models for the study of human genetic disorders. Here we describe an autosomal recessive human disease in two unrelated families characterized by a split-foot defect, nail abnormalities of the hands, and hearing loss, due to mutations disrupting the SAM domain of the protein kinase ZAK. ZAK is a member of the MAPKKK family with no known role in limb development. We show that Zak is expressed in the developing limbs and that a CRISPR/Cas-mediated knockout of the two Zak isoforms is embryonically lethal in mice. In contrast, a deletion of the SAM domain induces a complex hindlimb defect associated with down-regulation of Trp63, a known split-hand/split-foot malformation disease gene. Our results identify ZAK as a key player in mammalian limb patterning and demonstrate the rapid utility of CRISPR/Cas genome editing to assign causality to human mutations in the mouse in <10 wk.

摘要

CRISPR/Cas技术能够实现靶向基因组编辑,并能快速生成用于研究人类遗传疾病的转基因动物模型。在此,我们描述了两个不相关家族中的一种常染色体隐性人类疾病,其特征为足裂缺陷、手部指甲异常和听力丧失,这是由于破坏蛋白激酶ZAK的SAM结构域的突变所致。ZAK是MAPKKK家族的成员,在肢体发育中尚无已知作用。我们发现Zak在发育中的肢体中表达,并且CRISPR/Cas介导的两种Zak异构体的敲除在小鼠胚胎期是致死性的。相比之下,SAM结构域的缺失会诱导与已知的手足裂畸形疾病基因Trp63下调相关的复杂后肢缺陷。我们的结果确定ZAK是哺乳动物肢体模式形成中的关键因子,并证明了CRISPR/Cas基因组编辑在不到10周的时间内就能快速用于在小鼠中确定人类突变的因果关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78fa/4728371/751dcc464a25/183f05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78fa/4728371/465c3b918585/183f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78fa/4728371/26aa9d0c4c63/183f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78fa/4728371/a4b47d5327d3/183f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78fa/4728371/62de4a7aaff6/183f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78fa/4728371/751dcc464a25/183f05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78fa/4728371/465c3b918585/183f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78fa/4728371/26aa9d0c4c63/183f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78fa/4728371/a4b47d5327d3/183f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78fa/4728371/62de4a7aaff6/183f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78fa/4728371/751dcc464a25/183f05.jpg

相似文献

[1]
Exome sequencing and CRISPR/Cas genome editing identify mutations of ZAK as a cause of limb defects in humans and mice.

Genome Res. 2016-2

[2]
Rare missense variant p.Ala505Ser in the ZAK protein observed in a patient with split-hand/foot malformation from a non-consanguineous pedigree.

J Int Med Res. 2020-4

[3]
Highly efficient targeted mutagenesis in one-cell mouse embryos mediated by the TALEN and CRISPR/Cas systems.

Sci Rep. 2014-7-16

[4]
CRISPR-Directed Gene Editing Catalyzes Precise Gene Segment Replacement Enabling a Novel Method for Multiplex Site-Directed Mutagenesis.

CRISPR J. 2019-4

[5]
Off- and on-target effects of genome editing in mouse embryos.

J Reprod Dev. 2019-2-8

[6]
Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.

AIDS Rev. 2017

[7]
Generation of novel Il2rg-knockout mice with clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9.

Exp Anim. 2019-12-4

[8]
Rapid Control of Genome Editing in Human Cells by Chemical-Inducible CRISPR-Cas Systems.

Methods Mol Biol. 2018

[9]
CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report.

Arterioscler Thromb Vasc Biol. 2016-5

[10]
Harnessing CRISPR-Cas systems for bacterial genome editing.

Trends Microbiol. 2015-2-17

引用本文的文献

[1]
Fun in the sun: ribosomes defend against UV irradiation.

Trends Cell Biol. 2025-2

[2]
Dysregulated ribosome quality control in human diseases.

FEBS J. 2025-3

[3]
Heterozygous MAP3K20 variants cause ectodermal dysplasia, craniosynostosis, sensorineural hearing loss, and limb anomalies.

Hum Genet. 2024-3

[4]
Variable clinical presentation of split hand/foot malformation syndrome in a family with microduplication of 10q24.32: a case report.

Front Genet. 2024-1-5

[5]
A novel frameshift variant in UBA2 causing split-hand/foot malformations in a Pakistani family.

Hum Genome Var. 2023-5-23

[6]
Computational and Functional Analysis of Structural Features in the ZAKα Kinase.

Cells. 2023-3-22

[7]
Domain Architecture of the Nonreceptor Tyrosine Kinase Ack1.

Cells. 2023-3-15

[8]
Establishment and Molecular Characterization of Two Patient-Derived Pancreatic Ductal Adenocarcinoma Cell Lines as Preclinical Models for Treatment Response.

Cells. 2023-2-11

[9]
A novel MAP3K20 mutation causing centronuclear myopathy-6 with fiber-type disproportion in a Pakistani family.

J Hum Genet. 2023-2

[10]
ZAKβ is activated by cellular compression and mediates contraction-induced MAP kinase signaling in skeletal muscle.

EMBO J. 2022-9-1

本文引用的文献

[1]
Expanding the Biologist's Toolkit with CRISPR-Cas9.

Mol Cell. 2015-5-21

[2]
Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions.

Cell. 2015-5-21

[3]
Leveraging the power of high performance computing for next generation sequencing data analysis: tricks and twists from a high throughput exome workflow.

PLoS One. 2015-5-5

[4]
BRF1 mutations alter RNA polymerase III-dependent transcription and cause neurodevelopmental anomalies.

Genome Res. 2015-4

[5]
Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells.

Nat Biotechnol. 2015-3-24

[6]
Deletions, Inversions, Duplications: Engineering of Structural Variants using CRISPR/Cas in Mice.

Cell Rep. 2015-2-10

[7]
Deletions of exons with regulatory activity at the DYNC1I1 locus are associated with split-hand/split-foot malformation: array CGH screening of 134 unrelated families.

Orphanet J Rare Dis. 2014-7-29

[8]
All-trans-retinoid acid (ATRA) suppresses chondrogenesis of rat primary hind limb bud mesenchymal cells by downregulating p63 and cartilage-specific molecules.

Environ Toxicol Pharmacol. 2014-9

[9]
Characterization of the SAM domain of the PKD-related protein ANKS6 and its interaction with ANKS3.

BMC Struct Biol. 2014-7-7

[10]
A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles.

Nat Methods. 2013-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索