Department of Materials Science and Engineering, ‡Research Laboratory of Electronics, §Department of Chemical Engineering, ∥Department of Biological Engineering, ⊥Department of Brain and Cognitive Sciences, and #Department of Nuclear Science & Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.
Nano Lett. 2016 Feb 10;16(2):1345-51. doi: 10.1021/acs.nanolett.5b04761. Epub 2016 Jan 13.
From magnetic resonance imaging to cancer hyperthermia and wireless control of cell signaling, ferrite nanoparticles produced by thermal decomposition methods are ubiquitous across biomedical applications. While well-established synthetic protocols allow for precise control over the size and shape of the magnetic nanoparticles, structural defects within seemingly single-crystalline materials contribute to variability in the reported magnetic properties. We found that stabilization of metastable wüstite in commonly used hydrocarbon solvents contributed to significant cation disorder, leading to nanoparticles with poor hyperthermic efficiencies and transverse relaxivities. By introducing aromatic ethers that undergo radical decomposition upon thermolysis, the electrochemical potential of the solvent environment was tuned to favor the ferrimagnetic phase. Structural and magnetic characterization identified hallmark features of nearly defect-free ferrite nanoparticles that could not be demonstrated through postsynthesis oxidation with nearly 500% increase in the specific loss powers and transverse relaxivity times compared to similarly sized nanoparticles containing defects. The improved crystallinity of the nanoparticles enabled rapid wireless control of intracellular calcium. Our work demonstrates that redox tuning during solvent thermolysis can generate potent theranostic agents through selective phase control in ferrites and can be extended to other transition metal oxides relevant to memory and electrochemical storage devices.
从磁共振成像到癌症热疗和细胞信号的无线控制,通过热分解方法制备的铁氧体纳米粒子在生物医学应用中无处不在。虽然成熟的合成方案允许对磁性纳米粒子的尺寸和形状进行精确控制,但在看似单晶材料中的结构缺陷导致了所报道的磁性能的变化。我们发现,在常用的碳氢溶剂中稳定亚稳的尖晶石有助于显著的阳离子无序,导致具有较差的热疗效率和横向弛豫率的纳米粒子。通过引入在热解时经历自由基分解的芳香醚,可以调整溶剂环境的电化学势,有利于铁磁相。结构和磁性表征确定了几乎无缺陷的铁氧体纳米粒子的特征,这些特征无法通过后合成氧化来证明,与含有缺陷的类似尺寸的纳米粒子相比,特定损耗功率和横向弛豫率提高了近 500%。纳米粒子的结晶度提高,使细胞内钙的无线控制变得更加迅速。我们的工作表明,溶剂热解过程中的氧化还原调谐可以通过铁氧体中的选择性相控制来生成有效的治疗药物,并可以扩展到与记忆和电化学存储设备相关的其他过渡金属氧化物。