Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, USA.
Biofabrication. 2016 Jan 13;8(1):015002. doi: 10.1088/1758-5090/8/1/015002.
Bottom-up tissue engineering requires methodological progress of biofabrication to capture key design facets of anatomical arrangements across micro, meso and macro-scales. The diffusive mass transfer properties necessary to elicit stability and functionality require hetero-typic contact, cell-to-cell signaling and uniform nutrient diffusion. Bioprinting techniques successfully build mathematically defined porous architecture to diminish resistance to mass transfer. Current limitations of bioprinted cell assemblies include poor micro-scale formability of cell-laden soft gels and asymmetrical macro-scale diffusion through 3D volumes. The objective of this work is to engineer a synchronized multi-material bioprinter (SMMB) system which improves the resolution and expands the capability of existing bioprinting systems by packaging multiple cell types in heterotypic arrays prior to deposition. This unit cell approach to arranging multiple cell-laden solutions is integrated with a motion system to print heterogeneous filaments as tissue engineered scaffolds and nanoliter droplets. The set of SMMB process parameters control the geometric arrangement of the combined flow's internal features and constituent material's volume fractions. SMMB printed hepatocyte-endothelial laden 200 nl droplets are cultured in a rotary cell culture system (RCCS) to study the effect of microgravity on an in vitro model of the human hepatic lobule. RCCS conditioning for 48 h increased hepatocyte cytoplasm diameter 2 μm, increased metabolic rate, and decreased drug half-life. SMMB hetero-cellular models present a 10-fold increase in metabolic rate, compared to SMMB mono-culture models. Improved bioprinting resolution due to process control of cell-laden matrix packaging as well as nanoliter droplet printing capability identify SMMB as a viable technique to improve in vitro model efficacy.
自下而上的组织工程需要生物制造方法的进展,以捕捉解剖排列的关键设计方面,跨越微观、中观和宏观尺度。为了引发稳定性和功能性,需要异质接触、细胞间信号传递和均匀的营养扩散来实现扩散传质性质。生物打印技术成功地构建了数学定义的多孔结构,以减小传质阻力。目前生物打印细胞组件的局限性包括富含细胞的软凝胶在微尺度上的成型性差和通过 3D 体积的不对称宏观扩散。这项工作的目标是设计一种同步多材料生物打印机 (SMMB) 系统,该系统通过在沉积前将多种细胞类型包装在异型阵列中,提高分辨率并扩展现有生物打印系统的功能。这种排列多种细胞负载溶液的单元方法与运动系统集成在一起,以打印异质纤维作为组织工程支架和纳升液滴。SMMB 的一组工艺参数控制组合流的内部特征和组成材料的体积分数的几何排列。SMMB 打印的肝细胞-内皮细胞负载的 200nl 液滴在旋转细胞培养系统 (RCCS) 中培养,以研究微重力对体外人肝小叶模型的影响。RCCS 条件培养 48 小时可使肝细胞细胞质直径增加 2μm,增加代谢率,并降低药物半衰期。与 SMMB 单培养模型相比,SMMB 异细胞模型的代谢率提高了 10 倍。由于细胞负载基质包装的过程控制以及纳升液滴打印能力的提高,生物打印分辨率得到改善,这表明 SMMB 是提高体外模型功效的可行技术。